HDU1598 并查集 或 二分+DFS

题意:求从s到t的所有路线中最大边权与最小边权差值的最小值。


方法一:并查集+贪心

将边按照边权从小到大排序,然后依次选取边作为从s到t路线的最小边,然后再按照边权从小到大不断加边,直到s、t联通,则最后加的边的边权与最小边权的差是答案的一个可能解。对最小边依次枚举,答案为所有可能解的最小值。


#include<cstdio>
#include<vector>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<cmath>
#include<cstdlib>

#define CLR(a,b) memset(a,b,sizeof(a))
using namespace std;
const int maxn = 205;
const int maxm = 1005;
const int inf = 0x3f3f3f3f;

int n,m;

struct edge{
    int u,v,speed;
    bool operator < (const edge& z){
        return speed < z.speed;
    }
}e[maxm];
int len;

int par[maxn];
void init_union(){CLR(par,-1);}
int find(int x){while(par[x]>=0) x=par[x]; return x;}
void unite(int x,int y){x=find(x);y=find(y);if(x!=y)par[y]=x;}
bool same(int x,int y) { return find(x) == find(y);}

void solve(int s,int t){
    int ans = inf;
    for(int i=0;i<len;i++){
        init_union();
        bool flag = false;
        for(int j=i;j<len;j++){
            unite(e[j].u,e[j].v);
            if(same(s,t)){
                flag = true;
                ans = min(ans,e[j].speed-e[i].speed);
                break;
            }
        }
        if(!flag) break;
    }
    if(ans == inf) printf("-1\n");
    else printf("%d\n",ans);
}

int main(){
    while(~scanf("%d%d",&n,&m)){
        len = 0;
        int a,b,c;
        while(m--){
            scanf("%d%d%d",&a,&b,&c);
            e[len].u = a;
            e[len].v = b;
            e[len].speed = c;
            len++;
        }
        sort(e,e+len);
        int q;
        scanf("%d",&q);
        while(q--){
            int s,t;
            scanf("%d%d",&s,&t);
            solve(s,t);
        }
    }

    return 0;
}


方法二:二分+DFS

【copy】二分枚举差,再枚举下界,上界=下界+差,在上下界的限制之下仍可到达终点,说明存在这么一个差,但是差还可能更小,所以继续二分。

#include<cstdio>
#include<vector>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<cmath>
#include<cstdlib>

#define CLR(a,b) memset(a,b,sizeof(a))
using namespace std;
const int maxn = 205;
const int maxm = 1005;
const int inf = 1e6 + 5;

int n,m;
struct edge{
    int t,speed;
};

vector<edge> G[maxn];
bool vis[maxn];
vector<int> speed;

void init(){
    for(int i=1;i<=n;i++) G[i].clear();
    speed.clear();
}

void add_edge(int u,int v,int cost){
    G[u].push_back((edge){v,cost});
    G[v].push_back((edge){u,cost});
}

void dfs(int v,int low,int up){
    vis[v] = true;
    for(int i=0;i<G[v].size();i++){
        edge e = G[v][i];
        if(e.speed >= low && e.speed <= up && !vis[e.t]){
            dfs(e.t,low,up);
        }
    }
}

void solve(int s,int t){
    double lb = 0,rb = inf;
    while(rb - lb > 0.2){
        double mid = (lb + rb) / 2;
        bool flag = false;
        for(int i=0;i<speed.size();i++){
            CLR(vis,0);
            dfs(s,speed[i],speed[i]+mid);
            if(vis[t]){
                flag = true;break;
            }
        }
        if(flag) rb = mid;
        else lb = mid;
    }
    if(rb == inf) printf("-1\n");
    else printf("%d\n",(int)floor(rb));
}

int main(){
    while(~scanf("%d%d",&n,&m)){
        init();
        int a,b,c;
        while(m--){
            scanf("%d%d%d",&a,&b,&c);
            add_edge(a,b,c);
            speed.push_back(c);
        }
        sort(speed.begin(),speed.end());
        speed.erase(unique(speed.begin(),speed.end()),speed.end());

        int q;
        scanf("%d",&q);
        while(q--){
            int s,t;
            scanf("%d%d",&s,&t);
            solve(s,t);
        }
    }

    return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值