Neutralzz的博客

我有自己的梦想和追求!

HDU 5303 Delicious Apples (DP) 2015多校联合第二场

题意:一个环上有n个苹果树,每个树上有ai个苹果,你有一个容量为k的篮子,装满苹果后要回到起点清空篮子,问你从起点出发,摘完所有苹果所走的最短路程。

思路:最后的结果肯定是顺时针取一定的苹果所走的最短路与逆时针走的最短路的和。

那么设dp[2][i],0代表顺时针,1代表逆时针,i代表取的苹果数,值为取完i个苹果回到原点的最短路程。position[i]为第i个苹果所在的位置。

以顺时针为例,如果2*position[i] <L,那么后来走的路程为2*position[i],反之,为L;

转移方程:dp[0][i] = min(dp[0][i],dp[0][i-j]+(2*position[i] <L ? 2*position[i] : L)).(1 <= j <= k)因为dp[0][i]是非递减的。

所以优化方程:dp[0][i] = dp[0][i-k]+(2*position[i] <L ? 2*position[i] : L)


代码:

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>

using namespace std;
typedef long long LL;

struct Nod{
    LL x,a;
    bool operator < (const Nod &z) const{
        return x < z.x;
    }
}in[100005];


LL dp[2][100005];
LL l,n,k,sum;
LL x[100005],a[100005];

void init(){
    memset(dp,0,sizeof(dp));
    sum = 0;
}

void solve(){
    dp[0][0] = dp[1][0] = 0;
    LL num = 1, pre;
    for(int i=0;i<n;i++){
        for(int j=0;j<a[i];j++){
            pre = num - k > 0 ? num - k : 0;
            dp[0][num] = dp[0][pre] + (2*x[i] > l ? l : 2*x[i]);
            num++;
        }
    }
    num = 1;
    for(int i=n-1;i>=0;i--){
        for(int j=0;j<a[i];j++){
            pre = num - k > 0 ? num - k : 0;
            dp[1][num] = dp[1][pre] + (2*l - 2*x[i] > l ? l : 2*l - 2*x[i]);
            num++;
        }
    }
    LL res = 0x3f3f3f3f3f3f3f3f;
    for(int i=0;i<=sum;i++)
        res = min(res,dp[0][i]+dp[1][sum-i]);
    printf("%I64d\n",res);
}

int main(){
    int cas;
    scanf("%d",&cas);
    while(cas--){
        init();
        scanf("%I64d%I64d%I64d",&l,&n,&k);
        for(int i=0;i<n;i++) scanf("%I64d%I64d",&in[i].x,&in[i].a);
        sort(in,in+n);
        for(int i=0;i<n;i++){
            x[i] = in[i].x;
            a[i] = in[i].a;
            sum += a[i];
        }
        solve();
    }
    return 0;
}


阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_26572969/article/details/47026713
个人分类: DP
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭