Light OJ 1382 The Queue(树形DP+数学)

75 篇文章 0 订阅
8 篇文章 0 订阅

题意:n个人排队,每个人b除CEO外都有一个监督人a,b必须排在a的后面,问有多少排队方案。

解析:显然是一个树形DP,简单想想子树的合并后的方案数怎么算就好了,挺简单的题。

设dp[i]为以i为根的子树中对应的方案数,num[i]是以i为根的子树的节点数。

下面考虑将两个队伍v1,v2合并一个队伍。

其对应的方案数为C(num[v1]+num[v2],num[v1])*dp[v1]*dp[v2]。

依据这个进行dfs。

[code]:

#include<cstdio>
#include<cstring>
#include<algorithm>

using namespace std;
typedef long long LL;
const LL MOD = 1e9+7;

struct Nod{
    int b,next;
    void init(int b,int next){
        this->b=b;this->next=next;
    }
}buf[2005];
LL C[2005][2005],Mul[2005],dp[1005];
int n,len,E[1005],num[1005],deg[1005],root;

void init(){
    len = 0;
    memset(E,-1,n*sizeof(int));
    memset(deg,0,n*sizeof(int));
}
void addEdge(int a,int b){
    buf[len].init(b,E[a]);E[a]=len++;
    buf[len].init(a,E[b]);E[b]=len++;
}
void dfs(int u,int pre){
    int i,v;
    dp[u] = 1;num[u] = 1;
    for(i = E[u];i != -1;i = buf[i].next){
        v = buf[i].b;
        if(v == pre) continue;
        dfs(v,u);
        num[u] += num[v];
        dp[u] = C[num[u]-1][num[v]]*dp[u]%MOD*dp[v]%MOD;
    }
}
int main(){
    int i,j,cas,T;
    Mul[0] = C[0][0] = 1;
    for(i = 1;i <= 2000;i++){
        Mul[i] = (i*Mul[i-1])%MOD;
        C[i][0] = C[i][i] = 1;
        for(j = 1;j < i;j++)
            C[i][j] = (C[i-1][j]+C[i-1][j-1])%MOD;
    }
    scanf("%d",&cas);
    for(T = 1;T <= cas;T++){
        scanf("%d",&n);
        init();
        int u,v;
        for(i = 1;i < n;i++){
            scanf("%d%d",&u,&v);u--,v--;
            addEdge(u,v);
            deg[v]++;
        }
        for(i = 0;i < n;i++)
            if(!deg[i]) root = i;
        dfs(root,-1);
        printf("Case %d: %lld\n",T,dp[root]);
    }
    return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值