machinelearning
文章平均质量分 56
ChasingdreamLY
一个不想写程序又想赚钱的码农......
展开
-
tensorflow中tf.random_normal和tf.truncated_normal的区别
1、tf.truncated_normal使用方法tf.truncated_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None)从截断的正态分布中输出随机值。 生成的值服从具有指定平均值和标准偏差的正态分布,如果生成的值大于平均值2个标准偏差的值则丢弃重新选择。在正态分布的曲线中,横轴区间(μ-σ,转载 2018-01-23 22:32:33 · 259 阅读 · 0 评论 -
卷积神经网络(CNN)之一维卷积、二维卷积、三维卷积详解
由于计算机视觉的大红大紫,二维卷积的用处范围最广。因此本文首先介绍二维卷积,之后再介绍一维卷积与三维卷积的具体流程,并描述其各自的具体应用。1. 二维卷积 图中的输入的数据维度为14×1414×14,过滤器大小为5×55×5,二者做卷积,输出的数据维度为10×1010×10(14−5+1=1014−5+1=10)。如果你对卷积维度的计算不清楚,可以参考我之前的博客吴恩达深度学习笔记(...转载 2018-10-09 20:14:01 · 7417 阅读 · 1 评论 -
关联规则挖掘算法
关联规则挖掘是一种基于规则的机器学习算法,该算法可以在大数据库中发现感兴趣的关系。它的目的是利用一些度量指标来分辨数据库中存在的强规则。也即是说关联规则挖掘是用于知识发现,而非预测,所以是属于无监督的机器学习方法。“尿布与啤酒”是一个典型的关联规则挖掘的例子,沃尔玛为了能够准确了解顾客在其门店的购买习惯,对其顾客的购物行为进行购物篮分析,想知道顾客经常一起购买的商品有哪些。沃尔玛利用所有用户...转载 2018-08-31 20:06:08 · 4980 阅读 · 0 评论 -
深度学习: 验证集 & 验证集 区别
区别类别 验证集 测试集 是否被训练到 否 否 作用 纯粹用于调超参数 纯粹为了加试以验证泛化性能 使用次数 多次使用,以不断调参 仅仅一次使用 缺陷 模型在一次次重新手动调参并继续训练后所逼近的验证集,可能只代表一部分非训练集,导致最终训练好的模型泛化性能不够 测试集为了具有泛化代表性,往往数据量比较大,测试一轮要很...转载 2018-07-16 16:42:30 · 2877 阅读 · 1 评论 -
机器学习(一)高斯混合模型
计算机小白准备逐步重温机器学习算法,这是学习的第一个,高斯混合模型,文章系转载,原文地址:http://blog.csdn.net/hjimce/article/details/45244603 ——————————————————————————————华丽的分割线高斯混合算法是EM算法的一个典型的应用,EM算法的推导过程这里不打算详解,直接讲GMM算法的实现。之前做图像分割grab cut 算法转载 2018-04-19 15:44:03 · 854 阅读 · 0 评论 -
深度学习中关于自编码器的意义的理解
各位小伙伴们,大家好,今天让我们来如何用神经网络来处理非监督的学习,也就是AutoEncoder,自编码。首先,我们听到自编码,一定会想到,AutoEncoder会是个什么码呢?是条形码,二维码,还是我们宅男们最不能忍受的打码中的一种呢?NO.NO.NO,和他们都没有关系,其实自编码是一种神经网络形式,如果你一定要和上面的那些码扯上关系,我想可以这样理解了。现在我们先构架一个神经网络模型,这个模型是原创 2018-04-23 16:43:56 · 8918 阅读 · 0 评论 -
自动编码器(Auto Encoder)
1.初识Auto Encoder1986 年Rumelhart 提出自动编码器的概念,并将其用于高维复杂数据处理,促进了神经网络的发展。自编码神经网络是一种无监督学习算法,它使用了反向传播算法,并让目标值等于输入值,比如y(i)=x(i) 。下图是一个自编码神经网络的示例。自动编码器(autoencoder) 是神经网络的一种,该网络可以看作由两部分组成:一个编码器函数h = f(x) 和一个生成转载 2018-04-22 14:37:07 · 46830 阅读 · 11 评论 -
Conda常用命令
Conda 环境# 创建一个名为python34的环境,指定Python版本是3.4conda create --name python34 python=3.4# 激活某个环境activate python34 # for Windowssource activate python34 # for Linux & Macdeactivate python34 # for Windowsso转载 2018-03-04 09:45:47 · 352 阅读 · 0 评论 -
深度网络VGG理解
前言: ILSVRC 2014的第二名是Karen Simonyan和 Andrew Zisserman实现的卷积神经网络,现在称其为VGGNet。它主要的贡献是展示出网络的深度是算法优良性能的关键部分。 他们最好的网络包含了16个卷积/全连接层。网络的结构非常一致,从头到尾全部使用的是3x3的卷积和2x2的汇聚。他们的预训练模型是可以在网络上获得并在Caffe中使用的。 VGGNet不好的一转载 2018-02-26 20:57:03 · 4108 阅读 · 0 评论 -
[python] 使用scikit-learn工具计算文本TF-IDF值
在文本聚类、文本分类或者比较两个文档相似程度过程中,可能会涉及到TF-IDF值的计算。这里主要讲述基于Python的机器学习模块和开源工具:scikit-learn。 希望文章对你有所帮助,相关文章如下: [python爬虫] Selenium获取百度百科旅游景点的InfoBox消息盒 http://blog.csdn.net/eastmount/article/detail转载 2018-01-19 18:03:52 · 736 阅读 · 0 评论 -
关于在pycharm上import sklearn
本人计算机小白一枚,最近学习python,在尝试学习文本分类模型时遇到一个问题,关于在pycharm上import sklearn的问题。我在pycharm2017.3上整合anaconda这个包,同时安装了anaconda2和anaconda3,以anaconda2为默认解释器,对应的版本为python2.7。当在pycharm上导入sklearn库时存在如下问题(非本人图片,但是情况类似),见图原创 2018-01-17 15:10:50 · 19520 阅读 · 2 评论 -
LSTM学习笔记
Long Short-Term Memory(LSTM) 是一种循环神经网络(Recurrent Neural Network, RNN)。跟所有RNN一样,在网络单元足够多的条件下,LSTM可以计算传统计算机所能计算的任何东西。Like most RNNs, an LSTM network is universal in the sense that given enough networ...转载 2018-10-24 16:56:21 · 1908 阅读 · 0 评论