NLP
文章平均质量分 94
自然语言处理
Wisley.Wang
这个作者很懒,什么都没留下…
展开
-
使用huggingface的Transformers预训练自己的bert模型+FineTuning
将“softmax+交叉熵”推广到多标签分类问题:https://zhuanlan.zhihu.com/p/138117543SGMhttps://github.com/lancopku/SGM原创 2021-04-13 15:40:55 · 36077 阅读 · 49 评论 -
多分类问题引申到多标签分类问题(softmax+交叉熵)
最近在关注和参与了一些NLP的比赛,因为我做NLP的比赛的经验不多,所以过程中还是学习到不少知识,虽然目前名次不是特别好,但前排大佬们的分享还是能get到很多想法和知识的。今天介绍的是苏神(苏剑林)的一篇文章,本文仅仅是笔者个人的解读和思考,如有错误,还望读者指正。 在很多类型的比赛,包括NLP的比赛中,往往会有多标签分类的问题,所谓多标签分类,就是一个样本会有多个类别属性的标签,例如:在心电的疾病诊断中,一个患者可能同时患有一种或多种类型的心脏疾病。不同于多分类任务,一般来说,我们可以把多标签任.原创 2021-04-01 17:37:19 · 1904 阅读 · 1 评论 -
2020中国高校计算机大赛·华为云大数据挑战赛-数据分析(二)
2020中国高校计算机大赛·华为云大数据挑战赛-数据分析(二)这里继续上次的分析,上一篇我们主要分析了数据的结构,现在我们着重看下数据的gps。一、行船轨迹这里我们话了几张相同trace的行船记录,看看他们的轨迹是否一致,为了和test保持一致,我画了出现在test里面的trace.上面的轨迹图可以看出,一些轨迹还是比较规整的,但是一部分轨迹是存在不一致的,有的船可能因为总总原因,并不是按原路线行驶,甚至会有提前登陆的情况,这种情况在test可能也会发生。为此 我们在看看test里面截断的路原创 2020-06-22 20:25:12 · 4133 阅读 · 17 评论 -
NLP探索:一、从Word2vec到Bert
这篇主要记录自己在入手NLP时候,看到的不错的文章或者代码。初探NLP,Word Embedding:1、这篇微信长文写的非常棒!就是图片不清晰, 结合bert原文小白就可以入手:从Word Embedding到Bert模型——自然语言处理预训练技术发展史...原创 2019-12-17 13:55:54 · 382 阅读 · 1 评论