1、冒泡排序思想
让数组当中相邻的两个数进行比较,数组当中比较小的数值向下沉,数值比较大的向上浮!外层for循环控制循环次数,内层for循环控制相邻的两个元素进行比较。
2、代码
package com.xxx;
public class MyBubbleSort {
public static void main(String[] args) {
int[] arr = {3, 2, 5, 1, 8, 1, 11, 8};
int[] results = bubbleSort(arr);
for(int item : results){
System.out.print(item + " ");
}
}
/**
* 冒泡排序,升序排列
* 数组当中比较小的数值向下沉,数值比较大的向上浮!
*/
public static int[] bubbleSort(int[] arr) {
// 外层for循环控制循环次数
for(int i=0;i<arr.length;i++){
int tem = 0;
// 内层for循环控制相邻的两个元素进行比较
for(int j=i+1;j<arr.length;j++){
if(arr[i]>arr[j]){
tem = arr[j];
arr[j]= arr[i];
arr[i] = tem;
}
}
}
return arr;
}
}
3、算法分析
(1)由此可见:N个数字要排序完成,总共进行N-1趟排序,每i趟的排序次数为(N-i)次,所以可以用双重循环语句,外层控制循环多少趟,内层控制每一趟的循环次数
(2)冒泡排序的优点:每进行一趟排序,就会少比较一次,因为每进行一趟排序都会找出一个较大值。如上例:第一趟比较之后,排在最后的一个数一定是最大的一个数,第二趟排序的时候,只需要比较除了最后一个数以外的其他的数,同样也能找出一个最大的数排在参与第二趟比较的数后面,第三趟比较的时候,只需要比较除了最后两个数以外的其他的数,以此类推……也就是说,没进行一趟比较,每一趟少比较一次,一定程度上减少了算法的量。
(3)时间复杂度
1.如果我们的数据正序,只需要走一趟即可完成排序。所需的比较次数C和记录移动次数M均达到最小值,即:Cmin=n-1;Mmin=0;所以,冒泡排序最好的时间复杂度为O(n)。
2.如果很不幸我们的数据是反序的,则需要进行n-1趟排序。每趟排序要进行n-i次比较(1≤i≤n-1),且每次比较都必须移动记录三次来达到交换记录位置。在这种情况下,比较和移动次数均达到最大值:
综上所述:冒泡排序总的平均时间复杂度为:O(n2) ,时间复杂度和数据状况无关。