高斯近似

本文详细介绍了使用高斯近似方法来逼近不同函数的过程,包括平方函数f(x)=x^2、指数函数f(x)=x^(3/2)。通过计算qi、ci,并构建多项式p(x),最终得到拟合误差。在x^2的例子中,误差r≈0.00555,而在x^(3/2)的情况下,误差减小到r≈2.26e-5。此外,还提供了在Matlab中实现该算法的示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.(a) fx= x2

step 1: calculate qi

q0=a0-<a0,q0>q0=1;

q1=a1-<a1,q0>q0=32x-1;

step 2: calculate ci

c0=<f,q0>=01fq0dx=13;

### Polar高斯近似生成方法 在极化的设计过程中,为了评估各子信道的可靠性并决定哪些用于传输信息比特,哪些作为冻结比特,通常会应用多种分析手段。其中一种常用的方法即为高斯近似法。这种方法基于大数定律和中心极限定理,在足够长的编码块长度下,可以将多个独立同分布随机变量之和视为正态分布。 具体到极化中,当考虑N次二元扩展后的合成信道W_N时,其对称容量I(W_N)可被看作是由一系列相互关联的伯努利试验构成的结果。随着N的增长,这些合成信道的表现趋向于两个极端状态——要么几乎完美(接近理想信道),要么非常差劲(近乎无用)。此时,对于任意给定的原始信道W,通过适当变换能够得到一组新的、渐趋两极分化的虚拟信道集合{W_(i)}_{i=1}^{N}[^1]。 #### 计算步骤说明 - **初始化**:设定初始条件,比如令w(1,1)=0.5表示最基础情况下的信道质量估计值; - **迭代更新规则**:按照如下公式递推计算后续阶段各个位置上的权重: 对于每一轮循环中的每一个偶数索引j, \( w(i,2*j-1) = 2 * w(\frac{i}{2},j) - (w(\frac{i}{2},j))^2 \) \( w(i,2*j) = (w(\frac{i}{2},j))^2 \)[^3] 此过程模拟了信道组合与分裂操作的效果,并最终形成了一张反映不同信道相对优劣性的表格。值得注意的是,上述表达式实际上是对巴氏参数Z进行了数值逼近处理;而在实际工程实践中,则更倾向于直接运用更加简便高效的高斯模型来进行快速估算。 ```matlab index = 10; n = 2 .^ (1 : index); w = zeros(n(end)); w(1) = 0.5; for i = n for j = 1 : i / 2 w((i - 1) * 2 + 1) = 2 * w(j) - pow(w(j), 2); w((i - 1) * 2 + 2) = pow(w(j), 2); end end scatter(1:length(w), w, 'b.'); xlabel('Channel Index'); ylabel('Symmetric Capacity Approximation by Gaussian Method'); title('Gaussian Approximation of Channel Reliability in Polar Codes'); ``` 该Matlab脚本展示了如何利用高斯近似技术来预测经过多轮极化作用之后形成的众多子信道各自的性能指标变化趋势。它不仅有助于理解理论概念背后的物理意义,也为实现高效能通信系统提供了重要的工具支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值