- 博客(8)
- 收藏
- 关注
原创 Keras:回调函数Callbacks应用
from keras.callbacks import TensorBoard, ModelCheckpoint, ReduceLROnPlateau, EarlyStoppinglogging = TensorBoard(log_dir=log_dir)checkpoint = ModelCheckpoint(log_dir + 'ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5', monitor='v...
2021-08-07 10:52:30 861
原创 详解常见的tensorflow,keras模型保存和加载
一定要看代码注释,这些模型格式可以互相转化,有兴趣自己查阅学习!Tensorflow1、CheckPoint(.ckpt) :.ckpt方式保存模型,这种模型文件是依赖 TensorFlow 的,只能在其框架下使用(我很少使用这种,初学感觉文件好多,也不好理解)参考TensorFlow模型保存和提取方法保存:利用tf.train.Saver类实现模型的保存和加载,直接上代码!!!import tensorflow as tfv1 = tf.Variable(tf.cons.
2021-08-04 11:55:31 3473
原创 加载模型时 出现“Could not interpret optimizer identifier” :******
这个问题 文章“Could not interpret optimizer identifier” error in Keras其实已经告知原因,我想把我的问题具体化一下,先上报错代码。from tensorflow.keras.models import load_modelimport kerasmodel =load_model("model.h5")opt ==keras.optimizers.rmsprop(lr=0.0001,decay=1e-6)model.compile(..
2021-08-04 11:14:09 16428 2
原创 解决 keras 中 model.evaluate()方法RuntimeError: You must compile your model before training/testing报错的问题
model = keras.models.load_model("model.h5")test_loss, test_acc = model.evaluate(test_images, test_labels)可以看到这个代码,很符合model测试的逻辑,但是他依然会报错,我看到其他文章也有这样的代码,不清楚他们会不会报错,反正我这是出现了RuntimeError: You must compile your model before training/testing. Use `model.co..
2021-07-30 16:43:15 7592
原创 超级有用:针对python初学者,并根据最近做的机器人项目,浅谈机器视觉模型在实际项目的思路和框架(ancacode,tensrflow-gpu,opencv-dnn,andriod)
前言:我认为,对于一个开发者来说,最重要并不是急切的去实现它的功能,而是实现功能的一个整体框架和思路。近几天,通过阅读一些相关资料(阅读的不太多,希望有大佬有便捷的思路指点一下),做一些简单模型部署到andriod系统的学习心得,哈大家分享一下。研究时间较短,害怕忘记,想把这些想法和思路记录一下,今后深入研究还会继续完善。1...
2021-07-26 20:06:55 1157 1
原创 解决minGW32-make 编译opencv时 error: ‘std::_hypot‘ has not been declared using std::hypot;
在编译过工程中 出现 “ **/**/**/ (具体文件名) error: 'std::_hypot' has not been declared using std::hypot; ” 的错误 解决办法: 在具体文件名 中 的文件头 加入#define _hypot hypot我的报错时C:\mingw64\lib\gcc\x86_64-w64-mingw32\8.1.0\include\c++\math.h 出现这样的错误。如果在编译时 ...
2021-07-23 09:45:07 2421 1
原创 mnist数据集利用tensorflow(keras)模型训练,预测(内置数据集),保存,以及.h5转换为.pb再利用opencv-dnn模块的加载和预测(自己手写拍照后的本地数据集)
思路:1.先对数据集加载,并进行预处理。2.建立cnn模型(tensorflow)3.对模型进行训练,训练次数epoch和学习率learning rate根据最终预测结果可进行参数调整4.进行预测,这里先使用mnist取样后的测试集进行预测5.模型保存,再利用opencv-dnn模块读取并在本地数据集上预测(注意opencv有python和c++两个版本,如果在c++部署平台上,自行下载c++版opencv进行加载,本文使用opencv-python)环境:python3.7 .
2021-07-22 10:53:41 2349 11
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人