题意:
求n个字符串任意排列后可以得到的最大的括号匹配个数
解法:
每个字符串内部的匹配数是定值,可以读入的时候处理一下。处理之后得到的是形如")))((("这样的串,用a和b分别存每个字符串剩下的左括号和右括号的个数,这样字符串就可以丢掉,省很多空间。。
可以发现一个贪心的规律:显然最后应该是 ))((((( + )))(((((( + )))))(( + ))))(( 这样的形式是最优的,即分成两个区间,左边是左括号多的,右边是右括号多的。而区间内部的顺序对于另一个区间是无所谓的,所以只要考虑区间内部最大化匹配数:对于左区间,应该让右括号多的尽量靠右;对于右区间则相反。
这样我们定义了一种能得到最优解的偏序关系,将字符串按照这个关系排序,统计答案即可。
#include<bits/stdc++.h>
using namespace std;
#define llp(i,x,y) for(int i=x;i<y;++i) // [x,y) x->y
#define rlp(i,x,y) for(int i=y-1;i>=x;--i) // [x,y) y->x
#define lp(i,x) for(int i=0;i<x;++i) //[0,x)0->x
#define mem(a,x) memset(a,x,sizeof a)
typedef long long ll;
const ll N=1e5+1000;
struct node{
ll a,b;
ll ans;
bool operator < (node& x){
int tmp1 = a>b;
int tmp2 = x.a>x.b;
if (tmp1!=tmp2) return tmp1<tmp2;
else{
return tmp1==1?b>x.b:a<x.a;
}
}
}Str[N];
char s[N];
void deal(int i){
int len = strlen(s);
Str[i].a = Str[i].b = Str[i].ans = 0;
llp(k,0,len){
if (s[k] == '(') Str[i].b++;
else if (Str[i].b>0) {
Str[i].ans+=2;
Str[i].b--;
}
else Str[i].a++;
}
}
int main(){
int t,n;
scanf("%d",&t);
while(t--){
scanf("%d",&n);
lp(i,n) {
scanf("%s",s);
deal(i);
}
sort(Str,Str+n);//核心操作
ll ans=0;
ll left = 0;
lp(i,n){
ans += Str[i].ans + 2*min(left,Str[i].a);
left = max(left - Str[i].a,0ll);
left += Str[i].b;
}
printf("%lld\n",ans);
}
}