hdu 6299 贪心+分治

题意:


求n个字符串任意排列后可以得到的最大的括号匹配个数

 

解法:

 

每个字符串内部的匹配数是定值,可以读入的时候处理一下。处理之后得到的是形如")))((("这样的串,用a和b分别存每个字符串剩下的左括号和右括号的个数,这样字符串就可以丢掉,省很多空间。。

可以发现一个贪心的规律:显然最后应该是  ))((((( + )))(((((( + )))))(( + ))))(( 这样的形式是最优的,即分成两个区间,左边是左括号多的,右边是右括号多的。而区间内部的顺序对于另一个区间是无所谓的,所以只要考虑区间内部最大化匹配数:对于左区间,应该让右括号多的尽量靠右;对于右区间则相反。

这样我们定义了一种能得到最优解的偏序关系,将字符串按照这个关系排序,统计答案即可。

 

#include<bits/stdc++.h>
using namespace std;

#define llp(i,x,y) for(int i=x;i<y;++i) // [x,y) x->y
#define rlp(i,x,y) for(int i=y-1;i>=x;--i)  // [x,y) y->x
#define lp(i,x) for(int i=0;i<x;++i) //[0,x)0->x
#define mem(a,x) memset(a,x,sizeof a)

typedef long long ll;

const ll N=1e5+1000;

struct node{
  ll a,b;
  ll ans;
  bool operator < (node& x){
    int tmp1 = a>b;
    int tmp2 = x.a>x.b;
    if (tmp1!=tmp2) return tmp1<tmp2;
    else{
      return tmp1==1?b>x.b:a<x.a;
    }
  }
}Str[N];
char s[N];
void deal(int i){
  int len = strlen(s);
  Str[i].a = Str[i].b = Str[i].ans = 0;
  llp(k,0,len){
    if (s[k] == '(') Str[i].b++;
    else if (Str[i].b>0) {
      Str[i].ans+=2;
      Str[i].b--;
    }
    else Str[i].a++;
  }
}
int main(){
  int t,n;
  scanf("%d",&t);
  while(t--){
    scanf("%d",&n);
    lp(i,n) {
      scanf("%s",s);
      deal(i);
    }

    sort(Str,Str+n);//核心操作


    ll ans=0;
    ll left = 0;
    lp(i,n){
      ans += Str[i].ans + 2*min(left,Str[i].a);
      left = max(left - Str[i].a,0ll);
      left += Str[i].b;
    }
    printf("%lld\n",ans);
  }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值