openCV C++实现视频光斑轮廓及中心动态捕捉

学习openCV,需要动态监测视频中的光斑,并绘制轮廓
openCV中的二值化,可以过滤出较大块的高亮区域,测试代码中使用灰度阈值230-255之间来获取
并将其轮廓获取,求出轮廓的大小面积,并求拟合椭圆,从而得出光斑的位置和中心,具体实现代码和效果如下:

#include <iostream>
#include <opencv2/opencv.hpp>
#include <opencv2/calib3d/calib3d.hpp>
#include <opencv2/highgui/highgui.hpp>
using namespace cv;
Mat process(Mat& srcImg)
{

	Mat dstImg = srcImg.clone();
	Mat tempImg = srcImg.clone();
	cvtColor(tempImg, tempImg, CV_BGR2GRAY);//色域转换
	GaussianBlur(tempImg, tempImg, Size(3, 3), 0, 0);//高斯滤波
	threshold(tempImg, tempImg, 230, 255, CV_THRESH_BINARY);//二值化
	std::vector<std::vector<Point>> contours;
	std::vector<Vec4i> hierarcy;
	findContours(tempImg, contours, hierarcy, CV_RETR_TREE, CV_CHAIN_APPROX_NONE);//取轮廓
	std::vector<RotatedRect> box(contours.size());
	int max_index = 0;
	float max_area = 0;
	for (int i = 0; i < contours.size(); i++)//求拟合椭圆
	{
		if (contours[i].size() >= 50)
		{
			box[i] = fitEllipse(Mat(contours[i]));
			Size2f size = box[i].size;
			if (size.height > 15 && size.width > 15 && size.height*size.width > max_area)
			{
				max_area = size.height*size.width;
				max_index = i;
			}
		}
	}
	if (max_area != 0)//绘制中心十字
	{
		Point2d center = box[max_index].center;
		line(dstImg, Point2f(center.x, center.y - 6), Point2f(center.x, center.y + 6), Scalar(0, 0, 255), 2, 8);
		line(dstImg, Point2f(center.x - 6, center.y), Point2f(center.x + 6, center.y), Scalar(0, 0, 255), 2, 8);
		ellipse(dstImg, box[max_index], Scalar(0, 255, 0), 1, 8);
	}
	return dstImg;
}
int main()
{
	VideoCapture camera(0);
	if (!camera.isOpened())
	{
		std::cout << "打开摄像头失败" << std::endl;
		return -1;
	}
	Mat cache;
	while (true)
	{
		camera.read(cache);
		imshow("test", process(cache));
		waitKey(20);
	}

	return 0;
}

实现效果如下(偷个懒,这个光斑就用家里的灯来模拟了hhh)
如果对您有帮助的话,麻烦给作者来个小小的👍,谢谢啦
在这里插入图片描述

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值