大数据面试题知识点分析(十)

本文详细分析了Spark的执行流程、WordCount示例、Kafka Partition的影响、Kafka容灾机制、Shuffle Manager类型及其调优,以及RDD的存储内容和Driver的作用。这些是大数据面试中的关键知识点,对于理解Spark与Kafka的实时计算至关重要。
摘要由CSDN通过智能技术生成

为了保证效率和质量,每篇文章发布6个知识点,由简单及难,我们开始spark+kafka:

一般情况下面试的时候只要涉及到实时计算或者大批量计算,都会涉及到kafka和spark的面试问题,两者一般是综合起来的的,因此我把他们放在一起进行总结,这一块的问题会比较多,将分不同纬度多次总结。

友情提示:本专栏涉及大数据面试题及相关知识点不同于大多数的网络复制文,是博主精心准备和总结的最新的面试及知识点,喜欢就订阅噢,后续还会开展hdfs源码解析,spark源码解析栏目,欢迎关注博客,大家一起学习!

专栏:点击打开链接

博客:点击打开链接

 

1)spark的执行流程?

1.构建Spark Application的运行环境(启动SparkContext),SparkContext向资源管理器(可以是Standalone、Mesos或YARN)注册并申请container资源ÿ

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值