Diffe-Hellman

Diffe-Hellman密钥交换算法,主要是实现双方共享一个密钥


我们假设用户A,B想要秘密共享密钥Key

具体过程如下:

  1. A,B协商大质数N,及生成元g(注意:这里的协商不是线下,而是线上属不安全通信)
  2. A取一个随机数K1,并计算C1=_{g}K1 mod N
  3. B取一个随机数K2,并计算C2=_{g}K2 mod N
  4. A 将C1发给B,B将C2发给A
  5. A计算_{C2}K1 mod N =Key,B计算_{C1}K2 mod N =Key

 A,B双方实际完成的是Key=^{^{g}K1^{K2}} mod N = ^{^{g}K2^{K1}} mod N


 具体演示如下(点击进入全屏):

演示


 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值