GM(Goldwasser-Micali)加密算法

GMGoldwasser - Micali)概率公钥加密算法,其于二次剩余难以复合困难性问题


Goldwasser   micali


具体过程:

 密钥产生:

  1. 大素数pq,求出N=p*q
  2. 任取R满足J\left(\frac{R}{p} \right )=J\left(\frac{R}{q} \right )=-1  (J()雅可比符号)
  3. PKR ,N,SK pq

加密:

       1. B将明文转化为二进制数字M=(m1,m2,m3… mk) ∈{0,1}

       2. 对于每一个mi,都对应选取一个xi ∈{1,N-1}   

                                                            若mi=1 ci= R\times xi^{2} mod N

                                                             若mi=0 ci=xi^{2} mod N

      3.  C ={c1,c2,c3…ck} 将这个C发给A

解密:

       对于每一个ci 都求J\left ( \frac{ci}{p} \right )J\left ( \frac{ci}{q} \right )

          J\left ( \frac{ci}{p} \right )J\left ( \frac{ci}{q} \right )若都=1,mi=0 ,若都=-1,mi=1

       最终得到M


具体演示(点击进入全屏):

注:演示中任选R满足的是J\left(\frac{R}{p} \right )=J\left(\frac{R}{q} \right )=-1 是负1 

Goldwasser-micali


 

  • 5
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值