数据分析基础
文章平均质量分 57
数据分析的基础知识,关于环境搭建、numpy、pandas的使用等
小獾哥
技术为我赋能
展开
-
解决 pandas 读取 SQL Server 中的数据时,遇到 varchar 属性的中文字符显示乱码的问题(新)
读取SQL server中的数据。按需转换,指定特殊列进行转换。原创 2024-06-24 17:10:44 · 295 阅读 · 0 评论 -
将不同的dataframe数据写入同一个excel的不同sheet中
需求:如标题解决办法:import pandas as pdimport numpy as np# 构造数据df1 = pd.DataFrame(np.arange(6).reshape(2,3))df2 = pd.DataFrame(np.arange(12).reshape(3,4))df3 = pd.DataFrame(np.arange(24).reshape(3,8))df_list = [df1, df2, df3]# 输出结果file_path = r'./测试.xls原创 2021-09-23 16:23:10 · 480 阅读 · 0 评论 -
02.数据分析基础-思维导图
这几天猫哥把自己掌握的一些数据分析知识做成了一个思维导图,这个思维导图主体包含numpy、pandas以及数据可视化的内容。具体包含的内容主要是以实际案例为主,以及其对应的中文使用手册,案例中会包含相应的备注和代码。猫哥这样写的目的主要是为了方便大家的查找,毕竟numpy、pandas及数据可视化仅仅是数据分析的工具而已,没必要把所有的东西都记住,用到的东西查一查就可以了。数据分析的主要思想还是需要你对自身的业务有足够的了解,并利用统计学、概率论等数学知识进行深入的分析。(但如果你仅仅是想替别人做嫁衣的话原创 2020-05-17 19:29:13 · 1807 阅读 · 0 评论 -
numpy数组的使用案例
Numpy本身并没有提供那么多高级的数据分析功能,理解Numpy数组以及面向数组的计算将有助于我们更加高效的使用pandas之类的工具。Numpy最重要的一个特点就是其N纬数组对象(即ndarray),该对象是一个快速而灵活的大数据集容器。我们可以利用这种数组对整块的数据执行一些数学运算。1.创建ndarray数组a.array函数创建数组import numpy as nparra...原创 2020-05-07 23:56:19 · 528 阅读 · 0 评论 -
00.jupyter-notebook环境搭建
jupyter-notebook的安装在百度上一搜一大堆,猫哥在这里提一下,主要是为了统一编辑环境,避免不必要的错误。猫哥的建议是直接安装anaconda,因为anaconda包含了大量科学计算的包,也避免了后期我们在使用时,又去重新下载。安装前准备:将win10的python版本设置成默认python3. (网上有很多解决办法,其中猫哥认为最简单的一个做法是在环境变量的path中,将pyth...原创 2020-05-05 20:19:29 · 341 阅读 · 0 评论