NON-INTRUSIVE LOAD MONITORING WITH FULLY CONVOLUTIONAL NETWORKS

摘要:

在这项工作中,我们提出了一种深度神经网络架构,它实现了最先进的分解性能,大大提高了计算效率,将模型训练时间缩短了32倍,预测时间缩短了43倍。效率的提高尤为明显。

绪论:

这项工作的主要贡献是将新的神经网络架构应用于能量分解任务,与现有方法相比,这大大减少了训练和预测时间,同时实现了最先进的性能。 如果要大规模使用NILM来分解数百万的住宅物业的电力数据,正如数据的某些应用所暗示的那样,那么减少培训和预测时间就成为一个重要目标。 我们将现有的ConvNet方法与能量分解进行了比较,这是Zhang等人使用的“序列到点”模型。 [23]并表明我们的模型实现了最先进的性能。 为了进行比较,我们使用了几个度量标准,用于衡量模型的准确性和计算效率。

 

1.Related Work 

S2P模型的一个优点是仅对输出序列的每个元素进行单个预测。 这允许模型的所有表征能力集中在预测单个元素上,并且不需要对多个预测进行平均。

【14】这可能部分缓解了上面讨论的问题,其中具有lout = lin的S2S模型的一些输出元素无法访问所有附近的输入元素
2 Fully Convolutional Network 

上述所有模型都涉及使用重叠的滑动窗口。当使用这些方法时,输入序列的相同段作为不同输入窗口的一部分被多次处理,这有点多余。为了克服这种冗余并加速训练和预测,我们建议使用完全卷积网络(FCN)进行分解。 FCN(最初称为空间位移神经网络)以前已应用于密集预测任务,如图像分割[20] [18]。 ConvNets通常由一系列卷积层组成,后跟一个或多个完全连接的层。与此相反,FCN没有任何完全连接的层,而是仅由一系列卷积层组成。模型的输出是来自最终卷积层的特征映射。

这些模型与上述S2S和S2P模型具有一些相似之处。与S2S模型类似,FCN将序列作为输入并将序列作为输出。但是,与S2P模型类似,输出序列中的每个元素仅取决于以该输出元素为中心的输入序列的窗口。这是因为卷积层中每个神经元的输出仅依赖于输入序列的局部区域,称为局部感受野[17]。由于FCN的输出是平移不变的,因此从重叠滑动窗口平均多个预测将是多余的。

2 Dilated Convolutions 

使用扩张的卷积堆叠一系列具有不断增加的膨胀率的层允许ConvNets从多个时间尺度中提取上下文信息而不会丢失分辨率。如果顺序卷积层的扩张速率呈指数增加,那么感受野可以指数增加,只有网络复杂度的线性增加。在这项工作中提出的模型的最后一层中的滤波器具有2053个样本的感受域,相当于输入序列的274分钟窗口

使用的神经网络结构如图1所示。除了最后一层之外的所有层都有128个滤波器,这些滤波器被手动选择为最大数量的滤波器,这些滤波器基本上不会减慢训练速度。初始层是卷积层,滤波器宽度为9.此处使用的滤波器宽度大于以下层中的滤波器宽度,以便更好地平衡每层中的参数数量。接下来是一系列9个扩张的卷积层。每个扩张层的滤波器宽度为3,因为这是可以考虑过去,现在和未来信息的最小滤波器。第一膨胀卷积层的膨胀率设定为2,并且每个随后扩张的卷积层的膨胀率具有两倍于前一层的膨胀率。这允许网络的接收场以指数方式增加,同时线性地增加层数。在具有扩张卷积的层之后,使用具有128个滤波器和宽度为1的卷积层来允许输出

3.窗口设置

虽然完全卷积网络(FCN)理论上可以采用任意长度的输入序列,但我们将输入和目标分成较短的窗口以使训练变得切实可行。 输出窗口长度为2053,输入窗口长度为4105,用于确保最终卷积层中每个滤波器的整个感受野包含在输入中。 输入和输出序列被分成窗口,使得输出窗口不重叠并且输入窗口部分重叠。

 

结论:

我们提出了一种完全卷积神经网络架构,用于非侵入式负载监控。 我们将此网络架构与现有技术模型进行了比较,发现我们提出的架构通过两个不同的指标实现了较低的误差。 我们的模型比现有模型的计算效率更高。 模型参数的数量减少了72倍,训练时间减少了32倍,预测时间减少了43倍。

未来的研究还有其他几条可能值得研究的途径。陈等人。 [14]为NILM提出了一种新的卷积神经网络架构,该架构利用了门控线性单元和残余连接。将其与我们的模型进行比较并且可能研究将GLU或残余连接结合到FCN中的效果将是有趣的。另一个有趣的途径可能是包括附加信息作为神经网络的输入,例如每个家庭中的设备类型。 Fiterau等。 [7]提出了一种将结构化信息结合到深度神经网络中进行时间序列建模的方法,该方法可以应用于我们的模型。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值