[[EVD]] - 剑指 Offer 62. 圆圈中最后剩下的数字

该博客讨论了一种经典的算法问题——约瑟夫环,其中给出了如何求解当0到n-1的数字排列成圈并每次删除第m个数字后的最后剩余数字。通过动态规划的方法,博主详细解析了状态转移方程,并提供了高效的解决方案。示例展示了当n=5,m=3时,最后剩下的数字为3。此问题涉及到的算法思想对于理解动态规划和环形结构的处理具有重要意义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目分析:[[EVD]] - 剑指 Offer 62. 圆圈中最后剩下的数字icon-default.png?t=M276https://leetcode-cn.com/problems/yuan-quan-zhong-zui-hou-sheng-xia-de-shu-zi-lcof/

简单描述:

  • 0,1,···,n-1这n个数字排成一个圆圈,从数字0开始,每次从这个圆圈里删除第m个数字(删除后从下一个数字开始计数)。求出这个圆圈里剩下的最后一个数字。
  • 例如,0、1、2、3、4这5个数字组成一个圆圈,从数字0开始每次删除第3个数字,则删除的前4个数字依次是2、0、4、1,因此最后剩下的数字是3。

限制🚫

  • 1 <= n <= 10^5
  • 1 <= m <= 10^6

示例:

输入: n = 5, m = 3
输出: 3

解题思路:

思路:

  • #动态规划DP  #约瑟夫环
    • dp[i]:i个数字中最后留下来的数的下标
    • 状态分析: 不列公式分析了,想了解的看大佬题解,基本就是做个映射,类似高数的换元
    • 映射分析,以f(5,3)为例子
      f(n,m)f(n-1,m)f(n,m)删除
      f(5,3)=30、1、2、3、4
      f(4,3)=00、1、2、33、4、0、1
      f(3,3)=10、1、21、3、4
      f(2,3)=10、11、3
      f(1,3)=-003
    • 状态转移方程
      • dp[i] = (dp[i-1]+m)%i;

效率:

  • 时间复杂度O(n)
  • 空间复杂度O(1)

代码:

class Solution
{
public:
    /*DP 约瑟夫环*/
    int lastRemaining(int n, int m)
    {
        int x = 0;  //f(1,m) = 0;
        for (int i = 2; i <= n; i++)
            x = (x + m) % i;
        return x;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值