题目分析:[[EVD]] - 剑指 Offer 62. 圆圈中最后剩下的数字
https://leetcode-cn.com/problems/yuan-quan-zhong-zui-hou-sheng-xia-de-shu-zi-lcof/
简单描述:
- 0,1,···,n-1这n个数字排成一个圆圈,从数字0开始,每次从这个圆圈里删除第m个数字(删除后从下一个数字开始计数)。求出这个圆圈里剩下的最后一个数字。
- 例如,0、1、2、3、4这5个数字组成一个圆圈,从数字0开始每次删除第3个数字,则删除的前4个数字依次是2、0、4、1,因此最后剩下的数字是3。
限制🚫
- 1 <= n <= 10^5
- 1 <= m <= 10^6
示例:
输入: n = 5, m = 3
输出: 3
解题思路:
思路:
- #动态规划DP #约瑟夫环
- dp[i]:i个数字中最后留下来的数的下标
- 状态分析: 不列公式分析了,想了解的看大佬题解,基本就是做个映射,类似高数的换元
-
映射分析,以f(5,3)为例子 f(n,m) f(n-1,m) f(n,m)删除 f(5,3)=3 0、1、2、3、4 f(4,3)=0 0、1、2、3 3、4、0、1 f(3,3)=1 0、1、2 1、3、4 f(2,3)=1 0、1 1、3 f(1,3)=-0 0 3 - 状态转移方程
- dp[i] = (dp[i-1]+m)%i;
效率:
- 时间复杂度
- 空间复杂度
代码:
class Solution
{
public:
/*DP 约瑟夫环*/
int lastRemaining(int n, int m)
{
int x = 0; //f(1,m) = 0;
for (int i = 2; i <= n; i++)
x = (x + m) % i;
return x;
}
};