算法第二周 B : 台阶问题

Description

有 N 级的台阶,你一开始在底部,每次可以向上迈最多 K 级台阶(最少 1 级),问到达第 N 级台阶有多少种不同方式。

Input

两个正整数N,K。1 ≤ N ≤ 106, 1 ≤ K ≤ 20

Output

一个正整数,为不同方式数,由于答案可能很大,你需要输出 ans mod 100003 后的结果。

Sample Input

5 2

Sample Output

8

Hint

N级台阶的情况可以由 N-K ~ N-1 这些台阶的情况得到

方法:动态规划

我们用 dp[x]表示爬到第 x 级台阶的方案数,考虑最后一步可能跨了一级台阶,也可能跨了两级台阶....,最多可以跨越K级台阶,所以我们可以列出如下式子: 

dp[x]=dp[x-1]+dp[x-2]+....+dp[x-k]

它意味着爬到第 x 级台阶的方案数是爬到第 x−1,x - 2,....x−k 级台阶的方案数和

#include<iostream>
using namespace std;
int main()
{
    
    int k,n;
    while (cin >> n >> k)
    {
        int* dp = new int[n + 1];
        for (int i = 0; i <= n; i++)
        {
            dp[i] = 0;
        }
        //边界条件:从0级台阶到0级台阶有一种方案,从0级到1级有一种方案
        dp[0] = 1;
        dp[1] = 1;
        //转移方程:dp[n]=d[n-1]+dp[n-2]+dp[n-3]+....+dp[n-k]
        for (int i = 2; i <= n; i++)
        {
            //从dp[2]开始计算,dp[2]=dp[1]+dp[0]
            int j = 1;
            while (j <= k && (i - j) >= 0)
            {
                dp[i] += dp[i - j];
                dp[i] = dp[i] % 100003;
                j++;
            }
        }
        cout << dp[n] % 100003;
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值