Description
有 N 级的台阶,你一开始在底部,每次可以向上迈最多 K 级台阶(最少 1 级),问到达第 N 级台阶有多少种不同方式。
Input
两个正整数N,K。1 ≤ N ≤ 106, 1 ≤ K ≤ 20
Output
一个正整数,为不同方式数,由于答案可能很大,你需要输出 ans mod 100003 后的结果。
Sample Input
5 2Sample Output
8Hint
N
级台阶的情况可以由N-K ~ N-1
这些台阶的情况得到
方法:动态规划
我们用 dp[x]表示爬到第 x 级台阶的方案数,考虑最后一步可能跨了一级台阶,也可能跨了两级台阶....,最多可以跨越K级台阶,所以我们可以列出如下式子:
dp[x]=dp[x-1]+dp[x-2]+....+dp[x-k]
它意味着爬到第 x 级台阶的方案数是爬到第 x−1,x - 2,....x−k 级台阶的方案数和
#include<iostream>
using namespace std;
int main()
{
int k,n;
while (cin >> n >> k)
{
int* dp = new int[n + 1];
for (int i = 0; i <= n; i++)
{
dp[i] = 0;
}
//边界条件:从0级台阶到0级台阶有一种方案,从0级到1级有一种方案
dp[0] = 1;
dp[1] = 1;
//转移方程:dp[n]=d[n-1]+dp[n-2]+dp[n-3]+....+dp[n-k]
for (int i = 2; i <= n; i++)
{
//从dp[2]开始计算,dp[2]=dp[1]+dp[0]
int j = 1;
while (j <= k && (i - j) >= 0)
{
dp[i] += dp[i - j];
dp[i] = dp[i] % 100003;
j++;
}
}
cout << dp[n] % 100003;
}
return 0;
}