164. 最大间距
给定一个无序的数组,找出数组在排序之后,相邻元素之间最大的差值。
如果数组元素个数小于 2,则返回 0。
示例 1:
输入: [3,6,9,1]
输出: 3
解释: 排序后的数组是 [1,3,6,9], 其中相邻元素 (3,6) 和 (6,9) 之间都存在最大差值 3。
示例 2:
输入: [10]
输出: 0
解释: 数组元素个数小于 2,因此返回 0。
说明:
- 你可以假设数组中所有元素都是非负整数,且数值在 32 位有符号整数范围内。
- 请尝试在线性时间复杂度和空间复杂度的条件下解决此问题。
解题思路:
此题难在如何用线性的时间复杂度(O(n))解决,否则直接快排或归并再取相邻元素最大差值即可。
此题没有必要保证元素的绝对有序,使用桶排序保证元素相对有序即可
大体思路:创建若干个桶,每个桶负责固定区间的元素,按照一定规则将元素放进桶中。
-
区间:section = (max - min ) / (n - 1) ,其中 max 为数组最大值,min 为数组最小值,n 为数组长度 。
-
桶的数量: bucketSize = (max - min ) / section + 1。
-
一定规则: idx = (nums[i] - min) / section,idx 为桶的编号。
示例:
假设初始元素为(为了直观所以排序了):[0,4,5,8,18,23,30,39],区间 section = (39 - 0) / (8 - 1) = 5,桶数量 bucketSize = (39 - 0) / 5 + 1 = 8
按照规则将元素放入桶中,如下图:
再看一种极端情况:等差数列。显而易见,最大的差值就是 section = 5,
若元素不为等差数列,最大的差值一定大于 section
所以最大的差值不会出现在桶内,因为单个桶内最大的差值小于 section
即最大的差值在桶与桶之间
我们维护每个桶的最大值与最小值,然后遍历桶,找出之间最大的差值即可。
方法一:桶排序
public int maximumGap(int[] nums) {
int n = nums.length;
// 特判
if (n < 2) {
return 0;
}
// 找出最大值,最小值
int max = Arrays.stream(nums).max().getAsInt();
int min = Arrays.stream(nums).min().getAsInt();
// 所有数都相等
if (max - min == 0){
return 0;
}
// 计算桶区间
int section = Math.max(1, (max - min) / (n - 1));
// 桶的个数
int bucketSize = (max - min) / section + 1;
// 每个桶的最小值
int[] min_bucket = new int[bucketSize];
// 每个桶的最大值
int[] max_bucket = new int[bucketSize];
// 初始化桶
Arrays.fill(min_bucket, Integer.MAX_VALUE);
Arrays.fill(max_bucket, -1);
for (int i = 0; i < n; i++) {
// 确定当前值在哪个桶
int idx = (nums[i] - min) / section;
// 更新最大值和最小值
min_bucket[idx] = Math.min(min_bucket[idx], nums[i]);
max_bucket[idx] = Math.max(max_bucket[idx], nums[i]);
}
// 结果
int ret = 0;
// 前一个桶的最大值
int prevMax = -1;
for (int i = 0; i < bucketSize; i++) {
// 桶里没有元素
if (max_bucket[i] == -1) {
continue;
}
// 计算桶间的最大值
if (prevMax != -1) {
ret = Math.max(ret, min_bucket[i] - prevMax);
}
prevMax = max_bucket[i];
}
return ret;
}
执行结果:
说明:
桶排序的时间复杂度和空间复杂度都为O(n)。测试用例过少,所以效率不如直接排序再遍历求解来得高。