SAS学习第9章:卡方检验之适合性检验与独立性检验

卡方检验就是统计样本的实际观测值与理论推断值之间的偏离程度,实际观测值与理论推断值之间的偏离程度就决定卡方值的大小,如果卡方值越大,二者偏差程度越大;反之,二者偏差越小;若两个值完全相等时,卡方值就为0,表明理论值完全符合。

1.适合性检验

卡方适合性检验的目的是为了检查所抽取的样本是符合与预期值。(是否符合理论值)

例:统计一羊场全年所产876只羔羊中,有公羔428只,母羔448只,根据遗传学理论,公母比应为1:1,试分析其是否符合理论。

A为实际观测值,T为理论值,卡方值gif.latex?%5Cchi%20%5E%7B2%7D%3D%5Csum%20%5Cfrac%7B%28A-T%29%5E%7B2%7D%7D%7BT%7D

可建立下表:

性别实际观测次数A理论次数T
428438
448438
data sheep;
input a b@@;
cards;
1 428 2 448
;
proc freq;
table a/testf=(438 438);
weight b;
run;

也可以按概率写为:

data sheep;
input a b@@;
cards;
1 428 2 448
;
proc freq;
table a/testp=(0.5 0.5);
weight b;
run;

c6a09d020b1b47f581475ef733c1376e.png

答:卡方值=0.4566,实际观测次数与理论值接近。

 

2.独立性检验

用于判断两类因子是独立还是彼此相关。与适合性检验相比,独立性检验无现成的理论与学说可利用,理论次数在两因子相互独立的假设下计算,自由度不同。

例:甲乙两地水牛体型按优良中劣四个等级分类,统计结果如下,问两地水牛体型构成是否相同?

 
10106010
1052010
Data buffalo;
Do a=1 to 2;
Do b=1 to 4;
Input c@@;
Output;
End;
End;
Cards;
10 10 60 10 10 5 20 10
;
Proc freq;
Table a*b/chisq;
Weight c;
Run;

486c16c49e814e748f243af014ff05af.png

p>0.05,不能否定无效假设,可以认为两地水牛体型构成比例相同。 

尤其注意:独立性检验的样本值的不同,可能会影响卡方值的选取!

当表格R*C为2*2时,还有结果中还会出现连续调整卡方与Fisher 精确检验。

N为样本总数,T为理论频数(期望计数)

1)Pearson卡方(此为默认的卡方):N≥40,且所有T≥5时,使用Pearson卡方获取结果结论

2)连续校正:N≥40,任意一个最小理论频数1≤T<5时,用连续校正卡方检验

3)Fisher精确概率:N≥40,2个及以上最小理论频数1≤T<5时,用Fisher精确概率检验的结果

4)N<40,或存在任意T<1时,用Fisher精确概率检验的结果

5)当卡方检验概率P值接近于α=0.05时,建议用Fisher精确检验

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值