poj 2446

本文探讨了二分图的复杂性,并提供了一种基于奇偶构图的解决方法。通过实例分析,展示了如何在有限时间内高效地解决二分图相关问题。

二分图 写的日了狗了,不能玩了,一开始就搓了。二分图,一定是把点分为两部分,放在一起很难搞。这题用奇偶构图 】

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>

using namespace std;
#define N 1100
int n,m,k,tmp1,tmp2;
int map[N][N],link[N],vis[N];
int path[40][40];
bool dfs(int x) {
    for(int i = 1; i < tmp2; i++) {
        if(map[x][i]  && vis[i] == 0) {
            vis[i] = 1;
            if(link[i] == 0 || dfs(link[i])) {
                link[i] = x;
                return 1;
            }
        }
    }
    return 0;
}
void solve() {
    int ans = 0;
    memset(link,0,sizeof(link));
    for(int i = 1; i < tmp1; i++) {
        memset(vis,0,sizeof(vis));
        if(dfs(i)) ans++;
    }
    //cout<<ans<<endl;
    if(ans*2+k == n*m) printf("YES\n");
    else printf("NO\n");
}

int main() {
    while(~scanf("%d%d%d",&n,&m,&k)) {
        memset(path,0,sizeof(path));
        int x,y;
        for(int i = 0;  i < k; i++) {
            scanf("%d%d",&x,&y);
            path[y][x] = -1;
        }
        tmp1 = tmp2 = 1;
        for(int i = 1; i <= n; i++) {
            for(int j = 1; j <= m; j++) {
                if(path[i][j] == 0) {
                    if((i+j) %2 ==0) path[i][j] = tmp1++;  //偶数点
                    else path[i][j] = tmp2++; //奇数点
                }
            }
        }

        memset(map,0,sizeof(map));
        for(int i = 1; i <= n; i++) {
            for(int  j = 1; j <= m; j++) {
                if(path[i][j] != -1 && (i+j)%2 == 1) {  //map[i][j]  表示偶数点与奇数点
                    if(path[i-1][j] >= 1) map[path[i-1][j]][path[i][j]]=1;
                    if(path[i+1][j] >= 1) map[path[i+1][j]][path[i][j]]=1;
                    if(path[i][j-1] >= 1) map[path[i][j-1]][path[i][j]]=1;
                    if(path[i][j+1] >= 1) map[path[i][j+1]][path[i][j]]=1;
                }
            }
        }
        solve();
    }
    return 0;
}
内容概要:本文介绍了基于Matlab代码实现的【EI复现】考虑网络动态重构的分布式电源选址定容优化方法,重点研究在电力系统中结合网络动态重构技术进行分布式电源(如光伏、风电等)的最佳位置选择与容量配置的双层优化模型。该方法综合考虑配电网结构变化与电源布局之间的相互影响,通过优化算法实现系统损耗最小、电压稳定性提升及可再生能源消纳能力增强等多重目标。文中提供了完整的Matlab仿真代码与案例验证,便于复现实验结果并拓展应用于微网、储能配置与配电系统重构等相关领域。; 适合人群:电力系统、电气工程及其自动化等相关专业的研究生、科研人员及从事新能源规划与电网优化工作的工程师;具备一定Matlab编程基础和优化理论背景者更佳。; 使用场景及目标:①用于科研论文复现,特别是EI/SCI级别关于分布式能源优化配置的研究;②支【EI复现】考虑网络动态重构的分布式电源选址定容优化方法(Matlab代码实现)撑毕业设计、课题项目中的电源选址定容建模与仿真;③辅助实际电网规划中对分布式发电接入方案的评估与决策; 阅读建议:建议结合提供的网盘资源下载完整代码与工具包(如YALMIP),按照文档目录顺序逐步学习,注重模型构建思路与代码实现细节的对应关系,并尝试在不同测试系统上调试与扩展功能。
本系统采用SpringBoot与Vue技术架构,实现了完整的影院票务管理解决方案,包含后台数据库及全套可执行代码。该系统在高等院校计算机专业毕业设计评审中获得优异评价,特别适用于正在进行毕业课题研究的学生群体,以及需要提升项目实践能力的开发者。同时也可作为课程结业作业或学期综合训练项目使用。 系统提供完整的技术文档和经过全面测试的源代码,所有功能模块均通过多轮调试验证,保证系统稳定性和可执行性。该解决方案可直接应用于毕业设计答辩环节,其技术架构符合现代企业级开发规范,采用前后端分离模式,后端基于SpringBoot框架实现业务逻辑和数据处理,前端通过Vue.js构建用户交互界面。 系统核心功能涵盖影院管理、影片排期、座位预定、票务销售、用户管理等模块,实现了从影片上架到票务核销的完整业务流程。数据库设计遵循第三范式原则,确保数据一致性和完整性。代码结构采用分层架构设计,包含控制器层、服务层、数据访问层等标准组件,便于后续功能扩展和维护。 该项目不仅提供了可直接部署运行的完整程序,还包含详细的技术实现文档,帮助开发者深入理解系统架构设计理念和具体实现细节。对于计算机专业学生而言,通过研究该项目可以掌握企业级应用开发的全流程,包括需求分析、技术选型、系统设计和测试部署等关键环节。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值