剪气球串(奇虎360 2017春招真题)
题目描述
小明买了一些彩色的气球用绳子串在一条线上,想要装饰房间,每个气球都染上了一种颜色,每个气球的形状都是各不相同的。我们用1到9一共9个数字表示不同的颜色,如12345则表示一串5个颜色各不相同的气球串。但小明希望得到不出现重复颜色的气球串,那么现在小明需要将这个气球串剪成多个较短的气球串,小明一共有多少种剪法?如原气球串12345的一种是剪法是剪成12和345两个气球串。注意每种剪法需满足最后的子串中气球颜色各不相同(如果满足该条件,允许不剪,即保留原串)。两种剪法不同当且仅当存在一个位置,在一种剪法里剪开了,而在另一种中没剪开。详见样例分析。
`
输入第一行输入一个正整数n(1≤n≤100000),表示气球的数量。第二行输入n个整数a1,a2,a3…an,ai表示该气球串上第i个气球的颜色。对于任意i,有1≤ai≤9。 | 样例输入31 2 3 |
---|---|
输出输出一行,第一行输出一个整数,表示满足要求的剪法,输出最终结果除以1000000007后的余数。 | 样例输出4 |
时间限制C/C++语言:2000MS其它语言:4000MS | 内存限制C/C++语言:131072KB其它语言:655360KB |
解析:对于剪气球这道题,很显然,当我们遇到一个这样的数据串[1, 2, 1, 2]
- 枚举从后边向前剪的种数,设当前串可以剪的种数为f(n)(n为从0位开始的长度)
- 则对于[1, 2, 1, 2]的可以减的种数为f(4) = f(3)[对应[1, 2, 1], 2] + f(2)[对应[1, 2], (12)]这种
- 对于子串[1, 2, 1]可以剪的种数为f(3) = f(2)[对应[1, 2], 1] + f(1)[对应1, (21)]
- 对应子串[1, 2]可以剪的种数为f(2) = f(1) [对应1, 2] + f(0)[对应null, 12]
- 从上边我们可以看出如果我们使用递归的方法计算的话,整个算法可能会重复计算很多重复的过程,所以我们可以使用数组来保存我们计算出的f(n),从而达到提高效率的方法
源码:
底下的递归方式的数据格式为从0 - n - 1为数据域,与循环方式不同,递归方式当有1000个气球的时候,会超出时间限制(很尴尬)
import java.util.Arrays;
import java.util.Scanner;
/**
* Created by no_clay on 2017/3/18.
*/
public class Main1 {
public static final int MOD = 1000000007;
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
int []data = null;
int len = scanner.nextInt();
if (len <= 0){
return;
}else{
data = new int[len + 1];
int count = 0;
for (int i = 1; i <= len && scanner.hasNext(); i++) {
data[i] = scanner.nextInt();
count ++;
}
if (count < len){
return;
}
}
int[]pos = new int[len + 1];
pos[0] = 1;
int[] number = new int[11];
for (int i = 1; i <= len; i++) {
Arrays.fill(number, 0);
for (int j = 0; j < i; j++) {
number[data[i - j]] ++;
if (number[data[i - j]] > 1){
break;
}
pos[i] = (pos[i - j - 1] + pos[i]) % MOD;
}
}
System.out.println(pos[len]);
}
public static int count(int[] data, int[] pos, int end){
int[] number = new int[10];
int count = 0;
if (end <= 0){
return 1;
}
for (int i = end - 1; i >= 0; i--) {
if (number[data[i]] == 0){
if (pos[i] != 0){
count += pos[i];
}else {
count += count(data, pos, i);
}
number[data[i]] ++;
}else {
break;
}
}
pos[end] = count;
return count;
}
}
分金子(奇虎360 2017春招真题)
题目描述
A、B两伙马贼意外地在一片沙漠中发现了一处金矿,双方都想独占金矿,但各自的实力都不足以吞下对方,经过谈判后,双方同意用一个公平的方式来处理这片金矿。处理的规则如下:他们把整个金矿分成n段,由A、B开始轮流从最左端或最右端占据一段,直到分完为止。 马贼A想提前知道他们能分到多少金子,因此请你帮忙计算他们最后各自拥有多少金子?(两伙马贼均会采取对己方有利的策略)
`
输入测试数据包含多组输入数据。输入数据的第一行为一个正整数T(T<=20),表示测试数据的组数。然后是T组测试数据,每组测试数据的第一行包含一个整数n,下一行包含n个数(n <= 500 ),表示每段金矿的含金量,保证其数值大小不超过1000。 | 样例输入2 64 7 2 9 5 210140 649 340 982 105 86 56 610 340 879 |
---|---|
输出对于每一组测试数据,输出一行”Case #id: sc1 sc2”,表示第id组数据时马贼A分到金子数量为sc1,马贼B分到金子数量为sc2。详见样例。 | 样例输出Case #1: 18 11Case #2: 3206 981 |
时间限制C/C++语言:1000MS其它语言:3000MS | 内存限制 |
源码:
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
solve();
}
private static void solve() {
Scanner in = new Scanner(System.in);
int num = in.nextInt();
for (int i=1; i<=num; i++){
int n = in.nextInt();
// 记录n份金子
int[] array = new int[n+1];
// 前i份金子的数量之和
int[] sum = new int[n+1];
array[0] = 0;
sum[0] = 0;
for (int j=1; j<=n; j++) {
array[j] = in.nextInt();
sum[j] = sum[j-1] + array[j];
}
// 动态规划数组
int[][] f = new int[n+1][n+1];
for (int j=1; j<=n; j++)
// 记录对角线元素
f[j][j] = array[j];
int k=1;
while (k <= n-1){
// 从对角线元素开始计算,向右上挪动直至计算完f[1][n]
for (int j=1; j+k<=n; j++){
f[j][j+k] = sum[j+k] - sum[j-1] - Math.min(f[j][j+k-1], f[j+1][j+k]);
}
k++;
}
System.out.println("Case #"+i+": "+f[1][n]+" "+(sum[n]-f[1][n]));
}
in.close();
}
}