给你一个区间数组 intervals
,其中 intervals[i] = [starti, endi]
,且每个 starti
都 不同 。
区间 i
的 右侧区间 可以记作区间 j
,并满足 startj
>= endi
,且 startj
最小化 。
返回一个由每个区间 i
的 右侧区间 在 intervals
中对应下标组成的数组。如果某个区间 i
不存在对应的 右侧区间 ,则下标 i
处的值设为 -1
。
示例 1:
输入:intervals = [[1,2]] 输出:[-1] 解释:集合中只有一个区间,所以输出-1。
示例 2:
输入:intervals = [[3,4],[2,3],[1,2]] 输出:[-1,0,1] 解释:对于 [3,4] ,没有满足条件的“右侧”区间。 对于 [2,3] ,区间[3,4]具有最小的“右”起点; 对于 [1,2] ,区间[2,3]具有最小的“右”起点。
示例 3:
输入:intervals = [[1,4],[2,3],[3,4]] 输出:[-1,2,-1] 解释:对于区间 [1,4] 和 [3,4] ,没有满足条件的“右侧”区间。 对于 [2,3] ,区间 [3,4] 有最小的“右”起点。
提示:
1 <= intervals.length <= 2 * 104
intervals[i].length == 2
-106 <= starti <= endi <= 106
- 每个间隔的起点都 不相同
C++
class Solution {
public:
vector<int> findRightInterval(vector<vector<int>> &intervals)
{
vector<int> res;
vector<int> vec;
int n = intervals.size();
unordered_map<int, int> mp;
for (int i = 0; i < n; i++) {
vec.push_back(intervals[i][0]);
mp[intervals[i][0]] = i;
}
sort(vec.begin(), vec.end());
for (int i = 0; i < n; i++) {
int a = intervals[i][1];
int idx = lower_bound(vec.begin(), vec.end(), a) - vec.begin();
if (idx < n) {
res.push_back(mp[vec[idx]]);
} else {
res.push_back(-1);
}
}
return res;
}
};