62. 不同路径
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
问总共有多少条不同的路径?
例如,上图是一个7 x 3 的网格。有多少可能的路径?
说明:m 和 n 的值均不超过 100。
示例 1:
输入: m = 3, n = 2
输出: 3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
1. 向右 -> 向右 -> 向下
2. 向右 -> 向下 -> 向右
3. 向下 -> 向右 -> 向右
示例 2:
输入: m = 7, n = 3
输出: 28
C++
class Solution {
public:
int uniquePaths(int m, int n)
{
//vector<vector<int>> temp(m,vector<int>(n,0));
vector<vector<int>> temp(m);
for(int i=0;i<m;i++)
{
temp[i].resize(n);
}
for(int i=0;i<m;i++)
{
temp[i][0]=1;
}
for(int i=0;i<n;i++)
{
temp[0][i]=1;
}
for(int i=1;i<m;i++)
{
for(int j=1;j<n;j++)
{
temp[i][j]=temp[i-1][j]+temp[i][j-1];
}
}
return temp[m-1][n-1];
}
};
python
class Solution:
def uniquePaths(self, m, n):
"""
:type m: int
:type n: int
:rtype: int
"""
temp=[[1 for i in range(n)] for i in range(m)]
for i in range(1,m):
for j in range(1,n):
temp[i][j]=temp[i-1][j]+temp[i][j-1]
return temp[m-1][n-1]