针对大类别分类实验的一些记录

最近在对10750个汉字做分类,使用resnet50为基本框架,分类部分多加了一个线性层,每个汉字作为1类。损失函数是交叉熵函数。

类别太多的话,网络一开始不易学习到。使用sgd的话好像根本没法学习。

我使用Adadelta (lr=0.01) 从头开始训练,虽然结果可以达到92%,但是查看网络输出的得分发现值相当异常,全部都是小于-30,000。这也导致了最后的分类层的梯度值相当大,最终导致训练不好(没法把loss降到很低)。

目前是先用Adadelta从头训练,可以选择当loss降到5一下时,换用Adam (lr=1e-3),这样网络输出的分数值就会变得正常了,而且loss下降得很好。

最后也可以用SGD微调参数。

有空一定要好好研究一下这些优化器的原理。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值