时间复杂度:O(1)、O(n)、O(n²)、O(nlogn)等是什么意思,白话文解释专业术语。

(1)时间频度
一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。
(2)时间复杂度
一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n)) 为算法的渐进时间复杂度,简称时间复杂度。

在T(n)=4n²-2n+2中,就有f(n)=n²,使得T(n)/f(n)的极限值为4,那么O(f(n)),也就是时间复杂度为O(n²)


看维基百科的解释,咱先不考虑数学上的概念,在计算机领域,n只能趋近于无穷大,所以,就暂且只考虑这个无穷大的方向。
T(n)=4n²-2n+2,当n无穷大的时候,后面的“-2n+2”的值对整体T(n)的影响就可以忽略不计。
用到计算机领域,那么,“-2n+2”的这部分执行时间就可以忽略不计。
在数学上,T(n)的极限值就是4n²。
上图中第二段的解释如下:
当4n²与5n³,这个两个不同级的数,比较的时候,那么前面的系数,4和5,也是无关紧要的,也是可以忽略的。




发布了445 篇原创文章 · 获赞 7478 · 访问量 760万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览