[CQOI2007]余数求和 --- 除法(整除)分块

传送门:洛谷2261


题目描述

给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod i表示k除以i的余数。例如G(10, 5)=5 mod 1 + 5 mod 2 + 5 mod 3 + 5 mod 4 + 5 mod 5 …… + 5 mod 10=0+1+2+1+0+5+5+5+5+5=29


分析

先将所求的表示出来: ∑ i = 1 n k \quad \sum_{i = 1}^{n} k i=1nk mod i i i

将去掉取模可得: ∑ i = 1 n k − ⌊ k i ⌋ × i \quad \sum_{i = 1}^{n} k - \lfloor{\frac{k}{i}}\rfloor \times i i=1nkik×i

整理即得: ∑ i = 1 n k − ∑ i = 1 n ⌊ k i ⌋ × i \quad \sum_{i = 1}^{n} k - \sum_{i = 1}^{n} \lfloor{\frac{k}{i}}\rfloor \times i i=1nki=1nik×i

至此,ans总共分为两部分:
   1. ∑ i = 1 n k \quad \sum_{i = 1}^{n} k i=1nk 直接计算即可

2. ∑ i = 1 n ⌊ k i ⌋ × i \quad \sum_{i = 1}^{n} \lfloor{\frac{k}{i}}\rfloor \times i i=1nik×i 显然不能强算,对此考虑 ⌊ k i ⌋ \lfloor{\frac{k}{i}}\rfloor ik,随便举个例子就可以发现,在一定的连续范围内,它的取值是相同的,那么在这段取值相同的范围内,就是一个等差数列. 令 $ t = \lfloor{\frac{k}{i}}\rfloor , 对 于 满 足 条 件 的 ,对于满足条件的 ,i$有 $ t\leq\frac{k}{i} \to i\leq \frac{k}{t} , 因 此 , 满 足 ,因此,满足 ,, t = \lfloor{\frac{k}{i}}\rfloor 的 的 i 中 , 最 大 值 为 中,最大值为 ,\lfloor{\frac{k}{t}}\rfloor$.

由上可得:从 i = 1 i = 1 i=1开始枚举,根据2的结论,直接跳到 ⌊ k i ⌋ + 1 \lfloor{\frac{k}{i}}\rfloor + 1 ik+1的位置,从而减少枚举的数量


代码

#include <cstdio>
#include <cstdlib>
#include <cstring>

#define IL inline
#define ll long long

using namespace std;

IL int read()
{
    char c = getchar();
    int sum = 0 ,k = 1;
    for(;'0' > c || c > '9'; c = getchar())
        if(c == '-') k = -1;
    for(;'0' <= c && c <= '9'; c = getchar()) sum = sum * 10 + c - '0';
    return sum * k;
}

ll n, k;
ll ans;
IL ll min_(ll x, ll y) {return x < y ? x : y;}

int main()
{
    n = read(); k = read(); ans = n * k;
    for(ll l = 1, r, t; l <= n; l = r + 1)
    {
        t = k / l;
        r = t ? min_(k / t, n) : n ;
        ans -= t * (l + r) * (r - l + 1) >> 1;
    }
    printf("%lld", ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值