[洛谷 P1251]餐巾计划问题---三分+ 贪心

传送门:洛谷 P1251


题目描述

一个餐厅在相继的 N N N 天里,每天需用的餐巾数不尽相同。假设第 i i i 天需要 r i r_i ri块餐巾 ( i = 1 , 2 , … , N ) (i=1,2, \dots ,N) (i=1,2,,N)。餐厅可以购买新的餐巾,每块餐巾的费用为 p p p 分;或者把旧餐巾送到快洗部,洗一块需 m m m 天,其费用为 f f f 分;或者送到慢洗部,洗一块需 n n n 天( n &gt; m n&gt;m n>m),其费用为 s s s 分( s &lt; f s&lt;f s<f)。

每天结束时,餐厅必须决定将多少块脏的餐巾送到快洗部,多少块餐巾送到慢洗部,以及多少块保存起来延期送洗。但是每天洗好的餐巾和购买的新餐巾数之和,要满足当天的需求量。

试设计一个算法为餐厅合理地安排好 N N N 天中餐巾使用计划,使总的花费最小。编程找出一个最佳餐巾使用计划。


分析

费用流的解法是有的,然而效率太低(不会 /逃)。为何不考虑贪心呢。
贪心
假设我们已经确定了一共要买的餐巾数,那么,就可考虑用贪心求出最小的费用了。
对于每天需要的餐巾,一共有一下三种来源:

  1. 未用过的餐巾
    已经买了,免费
  2. 前面慢洗出来的餐巾
    越早越好(留给后面的慢洗)
  3. 前面快洗出来的餐巾
    越晚越好(尽可能留给慢洗)

根据题目的条件,可以保证其费用是递增的。
至于实现,只需要记录每一天能够用来换洗的餐巾数即可。
三分
至于如何确定要买的餐巾数,枚举是一定 O K OK OK的,只不过效率太低。
我们可以猜测一下餐巾数与最小费用之间的关系,应该近似单谷函数
感性的认识:若餐巾数过小,则会无解,可视为无穷大;若餐巾数过多,则无需换洗餐巾,但换洗餐巾必定比不换洗要优。
于是,就愉快的三分吧(三分和二分差不多,随便看看就行了)。


代码

#include <cstdio>
#include <cstdlib>
#include <cstring>

#define IL inline
#define ll long long

using namespace std;

const int maxn = 2000 + 5;
const ll INF = 0xfffffffffffff; //ans比较大,注意无穷大的取值

IL int read()
{
    char c = getchar();
    int sum = 0 ,k = 1;
    for(;'0' > c || c > '9'; c = getchar())
        if(c == '-') k = -1;
    for(;'0' <= c && c <= '9'; c = getchar()) sum = sum * 10 + c - '0';
    return sum * k;
}

int n;
int t1, t2;
ll p0, p1, p2;
int need[maxn], num[maxn];
//需要的餐巾数  ,  每天可换洗的餐巾数
IL ll min_(ll x, ll y) { return x < y ? x : y; }

IL ll check(ll rest)
{
    memset(num, 0, sizeof(num));
    int tp = 1;
    ll price = rest * p0; //先买下来
    for(int t = 1, k, ned; t <= n; ++t)
    if(need[t])
    {
        ned = need[t];
        if(rest)//如果有剩余
        {
            k = min_(ned, rest);
            rest -= k;
            num[t] += k;
            ned -= k;
            if(!ned) continue;
        }
        
        for(; tp < t && !num[tp]; ++tp);//算是一个优化,找到最早的能换洗餐巾的时间
        for(int i = tp; i <= t - t2; ++i)//慢洗,从前往后
        if(num[i])
        {
            k = min_(ned, num[i]);
            num[i] -= k;
            num[t] += k;
            price += k * p2;
            ned -= k;
            if(!ned) continue ;
        }
        for(int i = t - t1; i >= 1 && i > t - t2; --i)//快洗, 从后往前
        if(num[i])
        {
            k = min_(ned, num[i]);
            num[i] -= k;
            num[t] += k;
            price += k * p1;
            ned -= k;
            if(!ned) continue;
        }
        if(ned) return INF; //如果能用的都用上了,但还是满足不了条件,那就无解了
    }
    return price;
}

int main()
{
    ll l = 0, r = 0;
    n = read();
    for(int i = 1; i <= n; ++i) { need[i] = read(); r += need[i]; }//头痛,解释不了
    p0 = read(); t1 = read(); p1 = read(); t2 = read(); p2 = read();
    l = need[1];
    //标准式三分
    for(ll k, lmid, rmid, s1, s2;l + 2 < r;)
    {
    	k = (r - l) / 3;
    	lmid = l + k;
    	rmid = r - k;
    	if(check(lmid) >= check(rmid)) l = lmid; else r = rmid;
    }
    ll ans = check(l);
    for(++l;l <= r; ++l)
        ans = min_(ans, check(l));
    printf("%lld", ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值