传送门:洛谷 P1251
题目描述
一个餐厅在相继的 N N N 天里,每天需用的餐巾数不尽相同。假设第 i i i 天需要 r i r_i ri块餐巾 ( i = 1 , 2 , … , N ) (i=1,2, \dots ,N) (i=1,2,…,N)。餐厅可以购买新的餐巾,每块餐巾的费用为 p p p 分;或者把旧餐巾送到快洗部,洗一块需 m m m 天,其费用为 f f f 分;或者送到慢洗部,洗一块需 n n n 天( n > m n>m n>m),其费用为 s s s 分( s < f s<f s<f)。
每天结束时,餐厅必须决定将多少块脏的餐巾送到快洗部,多少块餐巾送到慢洗部,以及多少块保存起来延期送洗。但是每天洗好的餐巾和购买的新餐巾数之和,要满足当天的需求量。
试设计一个算法为餐厅合理地安排好 N N N 天中餐巾使用计划,使总的花费最小。编程找出一个最佳餐巾使用计划。
分析
费用流的解法是有的,然而效率太低(不会 /逃)。为何不考虑贪心呢。
贪心:
假设我们已经确定了一共要买的餐巾数,那么,就可考虑用贪心求出最小的费用了。
对于每天需要的餐巾,一共有一下三种来源:
- 未用过的餐巾
已经买了,免费 - 前面慢洗出来的餐巾
越早越好(留给后面的慢洗) - 前面快洗出来的餐巾
越晚越好(尽可能留给慢洗)
根据题目的条件,可以保证其费用是递增的。
至于实现,只需要记录每一天能够用来换洗的餐巾数即可。
三分:
至于如何确定要买的餐巾数,枚举是一定
O
K
OK
OK的,只不过效率太低。
我们可以猜测一下餐巾数与最小费用之间的关系,应该近似单谷函数
感性的认识:若餐巾数过小,则会无解,可视为无穷大;若餐巾数过多,则无需换洗餐巾,但换洗餐巾必定比不换洗要优。
于是,就愉快的三分吧(三分和二分差不多,随便看看就行了)。
代码
#include <cstdio>
#include <cstdlib>
#include <cstring>
#define IL inline
#define ll long long
using namespace std;
const int maxn = 2000 + 5;
const ll INF = 0xfffffffffffff; //ans比较大,注意无穷大的取值
IL int read()
{
char c = getchar();
int sum = 0 ,k = 1;
for(;'0' > c || c > '9'; c = getchar())
if(c == '-') k = -1;
for(;'0' <= c && c <= '9'; c = getchar()) sum = sum * 10 + c - '0';
return sum * k;
}
int n;
int t1, t2;
ll p0, p1, p2;
int need[maxn], num[maxn];
//需要的餐巾数 , 每天可换洗的餐巾数
IL ll min_(ll x, ll y) { return x < y ? x : y; }
IL ll check(ll rest)
{
memset(num, 0, sizeof(num));
int tp = 1;
ll price = rest * p0; //先买下来
for(int t = 1, k, ned; t <= n; ++t)
if(need[t])
{
ned = need[t];
if(rest)//如果有剩余
{
k = min_(ned, rest);
rest -= k;
num[t] += k;
ned -= k;
if(!ned) continue;
}
for(; tp < t && !num[tp]; ++tp);//算是一个优化,找到最早的能换洗餐巾的时间
for(int i = tp; i <= t - t2; ++i)//慢洗,从前往后
if(num[i])
{
k = min_(ned, num[i]);
num[i] -= k;
num[t] += k;
price += k * p2;
ned -= k;
if(!ned) continue ;
}
for(int i = t - t1; i >= 1 && i > t - t2; --i)//快洗, 从后往前
if(num[i])
{
k = min_(ned, num[i]);
num[i] -= k;
num[t] += k;
price += k * p1;
ned -= k;
if(!ned) continue;
}
if(ned) return INF; //如果能用的都用上了,但还是满足不了条件,那就无解了
}
return price;
}
int main()
{
ll l = 0, r = 0;
n = read();
for(int i = 1; i <= n; ++i) { need[i] = read(); r += need[i]; }、
//头痛,解释不了
p0 = read(); t1 = read(); p1 = read(); t2 = read(); p2 = read();
l = need[1];
//标准式三分
for(ll k, lmid, rmid, s1, s2;l + 2 < r;)
{
k = (r - l) / 3;
lmid = l + k;
rmid = r - k;
if(check(lmid) >= check(rmid)) l = lmid; else r = rmid;
}
ll ans = check(l);
for(++l;l <= r; ++l)
ans = min_(ans, check(l));
printf("%lld", ans);
return 0;
}