虽然code-server已经能够满足很多需求, 比如用来写C/C++, Java, Tex等, 但是, 当遇到需要做数据分析的时候, 在code-server上运行Python和R就不是那么方便. 而当下非常流行的Python发行包Anaconda中自带了Jupyter Notebook, 是一种集科学计算和撰写文本为一体的"IDE".
当然, Anaconda的优点不止于此, 它预置了许多常用的科学计算包, 比如NumPy, pandas, 同时对R语言也有非常好的支持, 这些特性对用于学习的数据分析已经完全足够了.
PS: 若是嫌Anaconda太大的话, 可以选择Miniconda, 只自带了python和conda, 别的软件包可以通过pip
或者conda
进行安装.
Jupyter Notebook也是基于web的服务, 所以除了部署之外只要简单地做一下反代和注册service就好了.
本文主要介绍在Ubuntu Server 18.04下全局安装Jupyter Notebook,并且通过反向代理的方式实现多个用户账户通过不同的地址来访问自己的Jupyter Notebook
Step1: 安装Anaconda
去Anaconda的官网或镜像上下载对应系统,位数和Python版本的安装文件, 我选用的是TUNA镜像站. 由于在服务器上有多个用户需要使用, 所以安装时提了权限: sudo sh Anaconda3-5.3.1-Linux-x86_64.sh
.
接下来Anaconda会让你看一段特别长的License, 想不想看都行, 用Enter
翻到最后时, 会问是否同意, 哪有不同意的份, 输yes
就完事了.
接下来Anaconda会询问安装位置, 默认是在用户目录下: ~/anaconda3
, 但由于要多用户, 我选择安装在/usr/local/anaconda3
下. 然后就是不太漫长的等待, 最后还会问是否需要将环境变量加入.bashrc
, 选不选都可以, 不选的话之后在终端输入/path2anaconda/bin/conda init
, 会与之前选添加环境变量有着相同的效果(因为既没添加环境, 也没自动添加PATH
, 所以直接输入conda
大概率会报command not found
的错误).
最后还有个VScode的广告, 介于我们这个服务器甚至没有装x-server, 就没装了.
如果选了添加环境, .bashrc
的末尾会多出来一段东西, 大概像这样:
# added by Anaconda3 5.3.1 installer
# >>> conda init >>>
# !! Contents within this block are managed by 'conda init' !!
__conda_setup="$(CONDA_REPORT_ERRORS=false '/usr/local/anaconda3/bin/conda' shell.bash hook 2> /dev/null)"
if [ $? -eq 0 ]; then
\eval "$__conda_setup"
else
if [ -f "/usr/local/anaconda3/etc/profile.d/conda.sh" ]; then
. "/usr/local/anaconda3/etc/profile.d/conda.sh