连续整数序列中计算三元互质子集的个数

/** 改题目是对于一道在线笔试题目的简化版本,问题描述有些不同,望读者以本文开头的问题描述为主,进行下文的观看**/

参考原文:https://blog.csdn.net/lov_vol/article/details/51174769 

Description

给出一个整数n,表示1,2,...,n。从这n个数中任意选择3个不同的数字x,y,z,问x,y,z的最大公约数等于m的方案有多少种?(注意:(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1)属于同一种方案)

Input

第一行输入两个整数,n, m (1<= m<=n <=10^5) 

Output

输出一个整数表示答案

解题思路:

最大公约数(Greatest common divisor) ,问题求解情况 | gcd(x,y,z) ==m | 的个数,则容易得到x, y, z 均是m的倍数,故能够得到gcd==m 的数一定是在m的倍数中去寻找(1*m, 2*m, 3*m, .... d*m, | d = n/m)。故问题可以简化为: 求解 1~d 中任意三个数字,器最大公约数为1(这个转化是最关键的)。现在最初问题的 n == d,m == 1。根据排列组合,1~d中所以组合个数为C(d,3),那么 | gcd(x,y,z | x,y,z \epsilon 1~d ) == 1| 的个数为: C(d,3) - | gcd==(2,3,4,...,d) | 。

用dp[i] 表示 gcd == i 的个数情况,1~d中 i 的倍数有 b = d / i 个 ,故 dp[i] = C(b, 3) - dp[2*i, 3*i,....,b*i] .

public static void main(String[] args) {
		// TODO Auto-generated method stub
		Scanner sc=new Scanner(System.in);
		int[] num = new int[2];
		for (int i = 0; i < 2; i++) {
            num[i] = sc.nextInt();
        }
		int n = num[0];
		int m = num[1];
		n = n / m ;
		int ans = n*(n-1)*(n-2)/6;
		int[] dp = new int[10000];
		for(int i = n; i>=2; i--) {
			int a = n/i;
			dp[i] = a * (a-1) * (a-2) / 6;
			int b = 2*i;
			while(b<= n)
			{
				dp[i] -=dp[b];
				b += i;
			}
			
		}
		for(int i=2;i<=n;i++) {
			ans-=dp[i];
		}
		System.out.println("----------"+ans+"-------");
		sc.close();

		

	}

 

在数学上,两个整数如果它们的最大公约数(GCD)等于1,我们就说这两个数互质。对于1到2020这个范围内的所有数字,我们通常会计算个数字与其最大公约数是否为1,以确定它是否与其他数字互质。 在Java中,我们可以使用欧几里得算法(Euclidean algorithm)来计算最大公约数,并使用循环遍历1到2020之间的每个数字,检查其是否与2020互质。不过,直接这样做效率不高,因为大部分数字都不与2020互质,我们可以优化算法只对那些可能互质的数字进行检查。 以下是一个简单的Java代码示例,用于统计1到2020中与2020互质个数: ```java import java.util.ArrayList; import java.util.List; public class PrimeCount { public static void main(String[] args) { int n = 2020; List<Integer> coprimes = findCoprimes(n); System.out.println("There are " + coprimes.size() + " coprime numbers between 1 and " + n); } private static List<Integer> findCoprimes(int max) { List<Integer> coprimes = new ArrayList<>(); for (int i = 1; i <= max; i++) { if (gcd(i, max) == 1) { coprimes.add(i); } } return coprimes; } // Euclidean algorithm to calculate GCD private static int gcd(int a, int b) { if (b == 0) return a; return gcd(b, a % b); } } ``` 在这个代码中,`findCoprimes`函数找出所有与给定数互质的数字,然后`main`函数打印出结果。注意,由于1和2020本身就不互质,所以最终结果会比你预期的小1。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值