Tree

Tree

  • 树是无向、连通的无环图。

 

Binary Tree

  • 二叉树即是每个节点最多包含左子节点与右子节点这两个节点的树形数据结构。
  • 满二叉树: 树中的每个节点仅包含 0 或 2 个节点。
  • 完美二叉树(Perfect Binary Tree): 二叉树中的每个叶节点都拥有两个子节点,并且具有相同的高度。
  • 完全二叉树: 除最后一层外,每一层上的结点数均达到最大值;在最后一层上只缺少右边的若干结点。

Binary Search Tree

  • 二叉搜索树(BST)是一种特殊的二叉树,其任何节点中的值都会大于或者等于其左子树中存储的值并且小于或者等于其右子树中存储的值。
  • 时间复杂度:
    • 索引: O(log(n))
    • 搜索: O(log(n))
    • 插入: O(log(n))
    • 删除: O(log(n))

 

Trie

  • 字典树,又称基数树或者前缀树,能够用于存储键为字符串的动态集合或者关联数组的搜索树。树中的节点并没有直接存储关联键值,而是该节点在树中的挂载位置决定了其关联键值。某个节点的所有子节点都拥有相同的前缀,整棵树的根节点则是空字符串。

 

Fenwick Tree

  • 树状数组又称 Binary Indexed Tree,其表现形式为树,不过本质上是以数组实现。数组中的下标代表着树中的顶点,每个顶点的父节点或者子节点的下标能够通过位运算获得。数组中的每个元素包含了预计算的区间值之和,在整棵树更新的过程中同样会更新这些预计算的值。
  • 时间复杂度:
    • 区间求值: O(log(n))
    • 更新: O(log(n))

 

Segment Tree

  • 线段树是用于存放间隔或者线段的树形数据结构,它允许快速的查找某一个节点在若干条线段中出现的次数.
  • 时间复杂度:
    • 区间查询: O(log(n))
    • 更新: O(log(n))

 

 

发布了303 篇原创文章 · 获赞 179 · 访问量 9万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 技术工厂 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览