Coursera机器学习笔记
ai_XZP_master
本人计算机专业,主要研究人工智能、计算机视觉、物体检测。
展开
-
机器学习基本概念
一、机器学习也就是说机器学习不需要制定具体的模型,而是让计算机根据庞大的数据量自己训练模型,与之相对的,例如CFD软件,是建立在物理模型之上的,例如输运方程等。二、监督学习(Supervised learning)数据集中的每个样本有相应的“正确答案”,根据这些样本做出预测,分有两类:回归问题和分类问题回归问题给定一个新的模式,根据训练集推断它所对应的输出值(实数)是多少,是一种定量输出,也叫连续...原创 2018-06-08 20:17:30 · 3399 阅读 · 0 评论 -
梯度下降
梯度下降最小化函数J使用一个函数J(θ0, θ1),这是一个线性回归的代价函数也许是一些其他函数要使其最小化我们需要用一个算法来最小化函数J(θ0, θ1) 就像刚才说的,事实证明梯度下降算法可应用于多种多样的函数求解所以想象一下如果你有一个函数J(θ0, θ1, θ2, ...,θn ) 你希望可以通过最小化 θ0到θn 来最小化此代价函数J(θ0 到θn)用n个θ是为了证明梯度下降算法可以解决...原创 2018-06-08 20:24:58 · 177 阅读 · 0 评论 -
线性回归算法
一、监督学习完整流程(房价预测为例)给出正确答案,根据我们的数据来说房子实际的价格是多少(回归问题-根据之前的数据预测出一个准确的输出值)另一种监督学习流程-分类问题(寻找癌症肿瘤问题)当我们想要预测离散的输出值,例如寻找癌症肿瘤并想要确认肿瘤是良性的还是恶性的,这就是0/1离散输出问题。在监督学习中我们有一个数据集(训练集,包含不同房屋价格),我们的任务就说从这个数据中学习预测房屋的价格。常见的...原创 2018-06-08 20:33:01 · 1865 阅读 · 0 评论 -
线性代数基础
一、矩阵矩阵元素向量矩阵向量相乘与数组运算两个矩阵相乘矩阵乘法方法:特殊的矩阵运算1、 矩阵的逆2、 转置矩阵原创 2018-06-08 20:36:46 · 155 阅读 · 0 评论 -
Cousera--machine learning笔记
笔记已经上传至个人GitHub:https://github.com/xiezhiepng/machine_learning 非常建议初学者去cousera官网报名(需要翻墙,百度教程很多),地址:https://www.coursera.org/ 本人也是初学者,写的也不是很好,希望业内大牛们多多指教。...原创 2019-01-26 22:00:28 · 205 阅读 · 0 评论