15 散列表(上):Word文档中的单词拼写检查功能是如何实现的?
1. 散列表的由来?
- 散列表来源于数组,它借助散列函数对数组这种数据结构进行扩展,利用的是数组支持按照下标随机访问元素的特性。
- 需要存储在散列表中的数据我们称为键,将键转化为数组下标的方法称为散列函数,散列函数的计算结果称为散列值。
- 将数据存储在散列值对应的数组下标位置。
2. 如何设计散列函数?
总结3点设计散列函数的基本要求
- 散列函数计算得到的散列值是一个非负整数。
- 若key1=key2,则hash(key1)=hash(key2)
- 若key≠key2,则hash(key1)≠hash(key2)
正是由于第3点要求,所以产生了几乎无法避免的散列冲突问题。
3. 散列冲突的解放方法?
- 常用的散列冲突解决方法有2类:开放寻址法(open addressing)和链表法(chaining)
- 开放寻址法
1)核心思想:如果出现散列冲突,就重新探测一个空闲位置,将其插入。
2)线性探测法(Linear Probing):
插入数据:当我们往散列表中插入数据时,如果某个数据经过散列函数之后,存储的位置已经被占用了,我们就从当前位置开始,依次往后查找,看是否有空闲位置,直到找到为止。
查找数据:我们通过散列函数求出要查找元素的键值对应的散列值,然后比较数组中下标为散列值的元素和要查找的元素是否相等,若相等,则说明就是我们要查找的元素;否则,就顺序往后依次查找。如果遍历到数组的空闲位置还未找到,就说明要查找的元素并没有在散列表中。
删除数据:为了不让查找算法失效,可以将删除的元素特殊标记为deleted,当线性探测查找的时候,遇到标记为deleted的空间,并不是停下来,而是继续往下探测。
结论:最坏时间复杂度为O(n)
3)二次探测(Quadratic probing):线性探测每次探测的步长为1,即在数组中一个一个探测,而二次探测的步长变为原来的平方。
4)双重散列(Double hashing):使用一组散列函数,直到找到空闲位置为止。
5)线性探测法的性能描述:
用“装载因子”来表示空位多少,公式:散列表装载因子=填入表中的个数/散列表的长度。
装载因子越大,说明空闲位置越少,冲突越多,散列表的性能会下降。 - 链表法(更常用)
插入数据:当插入的时候,我们需要通过散列函数计算出对应的散列槽位,将其插入到对应的链表中即可,所以插入的时间复杂度为O(1)。
查找或删除数据:当查找、删除一个元素时,通过散列函数计算对应的槽,然后遍历链表查找或删除。对于散列比较均匀的散列函数,链表的节点个数k=n/m,其中n表示散列表中数据的个数,m表示散列表中槽的个数,所以是时间复杂度为O(k)。
4. 思考
- Word文档中单词拼写检查功能是如何实现的?
答:常用的英文单词有 20 万个左右,假设单词的平均长度是 10 个字母,平均一个单词占用 10 个字节的内存空间,那 20 万英文单词大约占 2MB 的存储空间,就算放大 10 倍也就是 20MB。对于现在的计算机来说,这个大小完全可以放在内存里面。所以我们可以用散列表来存储整个英文单词词典。
当用户输入某个英文单词时,我们拿用户输入的单词去散列表中查找。如果查到,则说明拼写正确;如果没有查到,则说明拼写可能有误,给予提示。借助散列表这种数据结构,我们就可以轻松实现快速判断是否存在拼写错误。 - 假设我们有10万条URL访问日志,如何按照访问次数给URL排序?
遍历 10 万条数据,以 URL 为 key,访问次数为 value,存入散列表,同时记录下访问次数的最大值 K,时间复杂度 O(N)。
如果 K 不是很大,可以使用桶排序,时间复杂度 O(N)。如果 K 非常大(比如大于 10 万),就使用快速排序,复杂度 O(NlogN)。 - 有两个字符串数组,每个数组大约有10万条字符串,如何快速找出两个数组中相同的字符串?
以第一个字符串数组构建散列表,key 为字符串,value 为出现次数。再遍历第二个字符串数组,以字符串为 key 在散列表中查找,如果 value 大于零,说明存在相同字符串。时间复杂度 O(N)。
5. 参考资料
- 王争老师在极客时间的专栏《数据结构与算法之美》
- 专栏下的所有评论
6. 声明
本文章是学习王争老师在极客时间专栏——《数据结构与算法之美》的学习总结,文章很多内容直接引用了专栏下的回复,推荐大家购买王争老师的专栏进行更加详细的学习
。本文仅供学习使用,勿作他用,如侵犯权益,请联系我,立即删除。