统计学习方法
迷途无归
风险》资本》劳动
展开
-
k近邻算法——kd树
kd树(K-Dimensional Tree)是一种对K维空间中的实例点进行存储以便对其进行快速检索的树形数据结构。 kd树是二叉树,表示对K维空间的一个划分 (partition).构造Kd树相 当于不断地用垂直于坐标轴的 超平面将k维空间切分,构成一系列的k维超矩形区 域.Kd树的每个结点对应于一个k维超矩形区域。 注:kd ...原创 2020-03-02 18:42:32 · 4564 阅读 · 0 评论 -
统计学习
概念 统计学习是关于计算机基于数据构建概论统计模型并运用模型对数据进行预测和分析的一门学科,也称为统计机器学习。 统计学习的只要特点:1、统计学习一计算机及网络为平台,是建立在计算机和网络上的;2、统计学习以数据为研究对象,是数据驱动的学科;3、统计学习的目的是对数据进行预测与分析;4、统计学习以方法为中心,统计学习方法构建模型并应有模型进行预测与分析;5、统计学习是概率论、统计学、信息论、计算理...原创 2019-08-10 17:40:03 · 615 阅读 · 0 评论 -
感知机 —— 原理
概念 感知机是二分类的线性分类模型,其输入为实例的特征向量,输出为实例的分类,取+1和-1二值。感知机对应于输入空间(特征空间)中将实例划分为正负两类的分离超平面,属于判别模型。 感知机学习旨在求出将训练数据进行线性划分的分离超平面,为此,导入基于误分类的损失函数,利用梯度下降对损失函数进行极小化,求得感知机模型。 感知机学习算法分为原始形式和对偶形式。 模型 定义:由输入空间到输出空间的函数:f...原创 2019-08-10 23:22:48 · 781 阅读 · 0 评论 -
感知机 —— 算法(对偶形式)
算法流程 输入:线性可分的数据集T={(x1,y1),(x2,y2),⋅⋅⋅,(xN,yN)}T= \left\{ (x_1,y_1), (x_2,y_2),···,(x_N,y_N)\right\}T={(x1,y1),(x2,y2),⋅⋅⋅,(xN,yN)},其中xi∈χ=Rnx_i \in\chi=\mathbf{R}^nxi∈χ=Rn,yi∈Y={−1,+1},i=1,2,⋅...原创 2019-08-15 23:00:58 · 1442 阅读 · 0 评论 -
感知机 —— 算法(原始形式)
算法流程 输入:训练数据集T={(x1,y1),(x2,y2),⋅⋅⋅,(xN,yN),}T= \left\{ (x_1,y_1), (x_2,y_2),···,(x_N,y_N),\right\}T={(x1,y1),(x2,y2),⋅⋅⋅,(xN,yN),},其中xi∈χ=Rnx_i \in\chi=\mathbf{R}^nxi∈χ=Rn,yi∈Y={−1,+1},i=1,2,⋅...原创 2019-08-13 00:27:12 · 1323 阅读 · 3 评论