笔者在经理向我介绍,以及学习相关课程时有感。
0.灵感
0.1在观看AI产品经理相关课程,以及看行业咨询时,联想到AI是否能与我实际所在的场景相结合,AI+工业,也就是工业AI,可以如何运用?
0.2笔者认为自己应当有观察行业讯息以及分析的能力,
(图源自:大模型官方课程)
但从近期市场的表现来看,AI相关分支反复活跃,包括算力、机器人、AI眼镜、AI玩具等,而无人驾驶相对沉寂,主要原因在于之前预期的FSD仍未有进展,缺了个东风。
昨晚文章重申了端侧AI的逻辑,强调端侧在2025年将迎来井喷。
但从近期市场的表现来看,AI相关分支反复活跃,包括算力、机器人、AI眼镜、AI玩具等,而无人驾驶相对沉寂,主要原因在于之前预期的FSD仍未有进展,缺了个东风。
英伟达一下子将自动驾驶芯片的算力提升到目前的近8倍,自动驾驶芯片就是无人驾驶汽车的大脑,Thor的正式上车对无人驾驶行业是明显的利好。
摘自《研讯社》
英伟达是全球人工智能的领导者,也是全球人工智能发展的引擎,今天,这个本就在高速运转的引擎又提速了。
CES展会第一天,英伟达CEO老黄就做了一个全面的演讲,包括发布全新GeForceRTX50系列显卡,在降价的同时实现了性能上的跃进;强调目标要创建一个巨型芯片,该芯片将使用72个BlackwellGPU或144个芯片,超越世界上最快的超级计算机的能力......
但我认为其中最具吸引力的是:英伟达推出首个生成式世界基础模型Cosmos,标志着英伟达正式开启物理人工智能时代。
物理人工智能顾名思义就是物理+AI,通俗地理解,就是人工智能反馈的内容要符合物理规律。
举个简单的例子,文生图或者文生视频模型,如果不考虑物理,那生成的内容就缺乏了重力、光学等细节,在加入物理知识后,生成的内容将更加逼真。
黄仁勋早在今年早些时候就强调过,“AI的新一波浪潮是物理AI”。
物理AI现阶段主要涵盖两个层次:
一个是模拟仿真的工具:将物理AI模型集成在自主机器中,实现感知、理解并在现实世界中执行复杂的操作。
另一个是生成符合物理规律的数据供模型训练:创造输出更多的数据供模型进行大量的训练,突破目前真实数据过少的瓶颈。
这次英伟达发布的Cosmos模型,就是在做第二件事,是全球首个基础模型,基于2000万小时的视频训练,重点关注物理动态和人类互动。可以接受文本、图像或视频的提示,生成虚拟世界状态,作为针对自动驾驶和机器人应用独特需求的视频输出。开发人员可以利用Cosmos在仿真环境中验证机器人、智能驾驶程序逻辑,获取真实世界中不易得到的数据来进行持续训练。
这意味着自动驾驶和机器人行业可以利用Cosmos模型大幅降低训练的成本,也就意味着Cosmos模型将进一步加快自动驾驶、机器人等对物理场景要求较高的产业的落地。
据老黄介绍,丰田汽车将在英伟达DRIVE AGX Orin平台上打造下一代汽车,运行经过安全认证的英伟达DriveOS操作系统。Aurora、Continental和英伟达合作大规模部署无人驾驶卡车。
可能上述例子还不够体现物理AI的想象力,再举个风洞的例子。
风洞本身就是仿真的工具,通过人工产生和控制气流,以模拟飞行器或物体周围气体的流动,是研制各种飞机导弹、宇宙飞船等航空航天器的必备设施。现在全球最强的风洞在中国,JF-22超高速激波风洞,能够模拟速度高达30倍音速的飞行条件,相当于每秒10公里的速度。与其他国家的高超声速风洞相比,JF-22风洞在速度、尺度和实验时间等方面都处于国际领先水平。
但先不说建造JF-22风洞的技术难度和成本,光使用一次JF-22风洞的成本就不是一般国家能承受的,有数据显示,JF-22风洞的瞬时功率达到了15000兆瓦,相当于三峡水电站的75%,每次测试的总成本要上亿元。
而如果物理AI真的成熟了,AI完全懂得物理规律,那未来根本不需要真的造风洞,只要通过软件模拟下就可以了。
所以随着物理AI的成熟,所有需要模拟训练的场景都可以通过AI实现,大幅减少成本和节约时间,因此物理AI将大幅推动人类科技创新的发展。
物理AI将决定一个国家的科技国力。摘自《研讯社》
1.AI+工业
如今工业AI有哪些运用场景呢?
比如
(1)机器视觉产品检测,可以检测外观,质量尺寸等,以及色度检测,定级定标。这些可以用于医药制造,3C产品,精密器件,地板、布匹等场景,零件外观检测,医药包装检测,芯片封装检测,钢板焊点检测等。那么在制造车灯的时候是否也能运用到,在观察
(2)人员行为规范检测,人在工厂里的行为要有安全规范,操作不当则会产生安全隐患,基于这个需求,则会有人员行为规范检测,对人的异常行为,操作规范,安全,人工功效等进行检测,这一般用于工程建设,工厂生产,船舶航运,对于笔者所在Valeo,也同样适用,
(3)设备故障检测,设备,流水线故障模型预测
2.车灯制造过程
1. 设计阶段
在生产开始之前,需要进行车灯的设计。这涉及到与汽车制造商(如 Tesla)的设计团队紧密合作,确定车灯的形状、尺寸、光学性能和功能要求。设计师会使用计算机辅助设计(CAD)软件来创建精确的 3D 模型,确保车灯能够完美适配 Model 3 的车身线条,并且符合相关的安全和法规标准,例如光照强度、照射角度和颜色等方面的规定。
2. 原材料准备
塑料颗粒:车灯外壳通常采用塑料材质,如聚碳酸酯(PC)或丙烯腈 - 丁二烯 - 苯乙烯共聚物(ABS)。这些塑料颗粒是注塑工艺的基础原料。它们被存储在大型料仓中,并通过管道输送到注塑机的料斗。
反射材料:为了确保车灯的良好光学性能,需要使用反射材料。这些材料通常是一种特殊的涂层或反射片,能够有效地将灯泡发出的光线反射到需要的方向。
灯泡和电子元件:根据车灯的类型(如卤素灯、LED 灯),准备相应的灯泡和电子控制元件。LED 灯还需要准备芯片、电路板和散热装置等。
3. 注塑成型
模具安装与调试:将预先制作好的注塑模具安装在注塑机上。这些模具是根据车灯外壳的形状设计的,具有高精度的型腔。在注塑前,需要对模具进行调试,包括检查模具的开合动作是否顺畅、冷却系统是否正常工作等。
注塑过程:塑料颗粒在注塑机的料筒中被加热熔化。通过螺杆的推动,熔融塑料被高压注入到模具型腔中。注塑机的参数,如温度、压力、注射速度等,会根据塑料的种类和车灯的具体要求进行精确设置。例如,聚碳酸酯的注塑温度一般在 280 - 320℃之间。在塑料注入模具后,需要保持一定的压力一段时间,以确保塑料充满型腔并且密度均匀。这个过程称为保压。
冷却脱模:注塑完成后,通过模具的冷却系统(通常是循环水冷却)使塑料快速冷却固化。冷却时间根据车灯的厚度和尺寸而定,一般在 30 - 90 秒左右。冷却后,模具打开,通过顶出装置将成型的车灯外壳从模具中脱出。
4. 表面处理
打磨和抛光:刚脱模的车灯外壳表面可能会有一些瑕疵,如浇口痕迹、飞边等。需要进行打磨和抛光处理,使表面光滑平整。这可以通过使用砂纸、抛光轮等工具来完成。
涂装:为了提高车灯的美观性和耐腐蚀性,会对车灯外壳进行涂装。涂装工艺包括底漆喷涂、色漆喷涂和清漆喷涂。底漆可以增强涂层与塑料表面的附着力,色漆决定了车灯的外观颜色,清漆则提供光泽和保护作用。在喷涂过程中,需要控制好喷漆房的温度、湿度和通风条件,以确保涂层的质量。
真空镀膜(可选):对于一些高端车灯或者需要特殊光学效果的车灯,会采用真空镀膜技术。在真空环境下,将金属或金属化合物蒸发后沉积在车灯反射镜表面,形成一层高反射率的薄膜,以提高光线的反射效率。
5. 光学组件安装
反射镜安装:将经过表面处理的反射镜安装到车灯外壳内部的相应位置。反射镜的安装精度对于车灯的光学性能至关重要,通常会使用定位销或胶水来确保其准确安装。
灯泡和透镜安装:根据车灯的设计,安装灯泡和透镜。对于 LED 车灯,需要将 LED 芯片焊接到电路板上,并安装散热装置,然后将电路板和透镜安装到外壳中。在安装过程中,需要注意灯泡的焦距和透镜的光学中心对齐,以保证光线的准确投射。
6. 电子元件安装与调试
电路板安装:将包含控制电路的电路板安装到车灯内部。这些电路板负责控制灯泡的亮度、闪烁模式(如转向灯)以及与汽车的电气系统进行通信。
接线与测试:连接灯泡、电路板和汽车电源接口之间的电线。在安装完成后,需要对车灯进行电气性能测试,包括检查灯泡是否正常点亮、亮度是否符合要求、电路是否存在短路或断路等问题。
7. 密封和质量检测
密封处理:为了防止灰尘、水分进入车灯内部,影响其性能和寿命,需要对车灯进行密封。通常会使用密封胶或橡胶密封圈来密封车灯的接口和缝隙。
质量检测:进行全面的质量检测,包括外观检查(检查是否有划痕、气泡、颜色不均匀等问题)、光学性能测试(如光照强度、照射角度、光斑形状等)、电气性能测试以及密封性测试。只有通过所有检测项目的车灯才能进入包装和发货环节。
8. 包装和发货
包装:合格的车灯会被包装在专门的包装盒中,包装盒内通常会有缓冲材料,如泡沫塑料或纸质隔板,以保护车灯在运输过程中不受损坏。包装盒上会标明车灯的型号、规格、适用车型(Tesla Model 3)等信息。
发货:包装好的车灯根据订单要求被发往 Tesla 的汽车组装厂,在那里它们将被安装到 Model 3 汽车上。
摘自Valeo官网
3.AI+车灯工厂
(1)将物理AI融入车灯工厂,机器人逐步取代工人,执行搬运等作业
(2)机器视觉融入车灯生产机器,检测如螺丝钉位置,车灯成品瑕疵,划痕等
(3)……
4.思考
(1)笔者应当继续观察时代发展以及风口,了解行业资讯,结合自身发展路线做出改进
以上为笔者拙见,欢迎和笔者互关探讨