APIO2016 题解

1 篇文章 0 订阅

Problem A 划艇

传送门

题意:有 1 ≤ n ≤ 500 1\le n\le500 1n500个元素,第 i i i个元素可以选或不选,如果选它的值必须在 [ a i , b i ] [a_i,b_i] [ai,bi]之间,要求至少选出一个元素,且选出的元素值递增。求方案数 m o d    1 0 9 + 7 \mod10^9+7 mod109+7

首先,当元素个数较少而元素值的范围较大时,往往可以考虑离散化。

为了方便起见,把每个区间离散化,变为 [ a i , b i + 1 ) [a_i,b_i+1) [ai,bi+1)

设离散化后的第 i i i个区间为 [ x i , x i + 1 ) [x_i,x_{i+1}) [xi,xi+1),长度为 l e n i len_i leni

d p i , j dp_{i,j} dpi,j为选出的最后一个元素为第 i i i个元素,它的值在 [ x j , x j + 1 ) [x_j,x_{j+1}) [xj,xj+1)之间的方案数。

如果前一个元素不在 [ x j , x j + 1 ) [x_j,x_{j+1}) [xj,xj+1)之间比较好转移。
d p i , j + = l e n j ∑ I = 0 i − 1 ∑ J = 0 j − 1 d p I , J dp_{i,j}+=len_j\sum_{I=0}^{i-1}\sum_{J=0}^{j-1}dp_{I,J} dpi,j+=lenjI=0i1J=0j1dpI,J
如果前一个元素在 [ x j , x j + 1 ) [x_j,x_{j+1}) [xj,xj+1)之间就比较难转移了。设 k k k为第一个在 [ x j , x j + 1 ) [x_j,x_{j+1}) [xj,xj+1)之间的元素。

设除 i , k i,k i,k外有 c n t cnt cnt个元素在 [ x j , x j + 1 ) [x_j,x_{j+1}) [xj,xj+1)之间,则方案数就是有 c n t + 2 cnt+2 cnt+2个元素,每个元素可在 [ x j , x j + 1 ) [x_j,x_{j+1}) [xj,xj+1)之间选或不选(第 i , k i,k i,k个元素必须选),选出的元素值递增的方案数。

如果除 i , k i,k i,k外有 a a a个元素被选择,则显然有
( c n t a ) ( l e n a + 2 ) {cnt\choose a}{len\choose a+2} (acnt)(a+2len)
种方案。所以方案总数就是
∑ a = 0 c n t ( c n t a ) ( l e n a + 2 ) = ∑ a = 0 c n t ( c n t a ) ( l e n c n t − a + 2 ) \sum_{a=0}^{cnt}{cnt\choose a}{len\choose a+2}\\ =\sum_{a=0}^{cnt}{cnt\choose a}{len\choose cnt-a+2} a=0cnt(acnt)(a+2len)=a=0cnt(acnt)(cnta+2len)
这个怎么求呢?考虑有 c n t + l e n cnt+len cnt+len个人,其中有 c n t cnt cnt个神犇, l e n len len个蒟蒻。

现在要选出 c n t + 2 cnt+2 cnt+2个人,则枚举神犇个数就可以得出 ∑ a = 0 c n t ( c n t a ) ( l e n c n t − a + 2 ) \sum_{a=0}^{cnt}{cnt\choose a}{len\choose cnt-a+2} a=0cnt(acnt)(cnta+2len)

因此
∑ a = 0 c n t ( c n t a ) ( l e n c n t − a + 2 ) = ( c n t + l e n c n t + 2 ) \sum_{a=0}^{cnt}{cnt\choose a}{len\choose cnt-a+2}\\ ={cnt+len\choose cnt+2} a=0cnt(acnt)(cnta+2len)=(cnt+2cnt+len)
总结一下:
d p i , j + = ∑ k = 1 i − 1 [ [ x j , x j + 1 ) ⊆ [ a k , a k + 1 ) ] ( c n t + l e n j c n t + 2 ) × ∑ I = 0 k − 1 ∑ J = 0 j − 1 d p I , J dp_{i,j}+=\sum_{k=1}^{i-1}[[x_j,x_{j+1})\subseteq[a_k,a_k+1)]{cnt+len_j\choose cnt+2}\times\sum_{I=0}^{k-1}\sum_{J=0}^{j-1}dp_{I,J} dpi,j+=k=1i1[[xj,xj+1)[ak,ak+1)](cnt+2cnt+lenj)×I=0k1J=0j1dpI,J
这个dp是 O ( n 5 ) O(n^5) O(n5)的,用前缀和优化可以做到 O ( n 3 ) O(n^3) O(n3)

最后一个问题是如何求组合数。由于 ( c n t + l e n j c n t + 2 ) cnt+len_j\choose cnt+2 (cnt+2cnt+lenj)中的 l e n j len_j lenj可能很大,所以不能预处理。

这时可以运用公式
( n m ) = n m ( n − 1 m − 1 ) {n\choose m}=\frac nm{n-1\choose m-1} (mn)=mn(m1n1)
递推,每当 c n t cnt cnt加1就把组合数乘以 c n t + l e n c n t + 2 \frac{cnt+len}{cnt+2} cnt+2cnt+len

#include<bits/stdc++.h>
using namespace std;
#define ll long long
namespace io{
    const int l=1<<19;
    char buf[l],*s,*t,c;
    char gc(){
        if(s==t){
            t=(s=buf)+fread(buf,1,l,stdin);
            return s==t?EOF:*s++;
        }
        return *s++;
    }
    template<class I>void gi(I &x){
        x=0;c=gc();while(c<'0'||c>'9')c=gc();
        while('0'<=c&&c<='9'){x=(x<<1)+(x<<3)+(c^48);c=gc();}
    }
};
using io::gi;

const int N=505,M=1005;
const ll p=1000000007,P=p*p;
inline ll add(ll a,ll b){return a+b<p?a+b:a+b-p;}
inline ll sub(ll a,ll b){return a-b<0?a-b+p:a-b;}
int n,m;
ll a[N],b[N],x[M],l[M],inv[N],sum[N][M],dp[N][M];
int main(){
	scanf("%d",&n);
	inv[1]=1;
	for(int i=2;i<=n+2;i++)inv[i]=(p-p/i)*inv[p%i]%p;
	for(int i=1;i<=n;i++){
		scanf("%d%d",&a[i],&b[i]);
		++b[i];
		x[++m]=a[i];
		x[++m]=b[i];
	}
	sort(x+1,x+m+1);
	m=unique(x+1,x+m+1)-x-1;
	for(int i=1;i< m;i++)l[i]=x[i+1]-x[i];
	for(int i=0;i< m;i++)sum[0][i]=1;
	for(int i=1;i<=n;i++){
		a[i]=lower_bound(x+1,x+m+1,a[i])-x;
		b[i]=lower_bound(x+1,x+m+1,b[i])-x;
		for(int j=a[i];j<b[i];j++){
			ll len=l[j],c=((len*(len-1))>>1)%p,d=len*sum[i-1][j-1]%p,now=0;
			for(int k=i-1;k;k--)if(a[k]<=j&&j<b[k]){
				d+=c*sum[k-1][j-1];
				if(d>=P)d-=P;
				++now;
				c=c*((now+len)*inv[now+2]%p)%p;
			}
			dp[i][j]=d%p;
		}
		sum[i][0]=1;
		for(int j=1;j<m;j++)sum[i][j]=add(sub(add(sum[i-1][j],sum[i][j-1]),sum[i-1][j-1]),dp[i][j]);
	}
	printf("%lld",sub(sum[n][m-1],1));
	return 0;
}

Problem B 烟花表演

传送门

暴力不难想到:设 d p v , x dp_{v,x} dpv,x v v v的子树内 v v v到每个叶子距离为 x x x的最小代价。

通过感性理解观察可以发现 d p v dp_v dpv是下凸的。则我们需要对凸包执行2种操作:

  1. 在子树上方加一条边
  2. 合并若干凸包

可以发现,只要维护凸包的拐点横坐标即可。不妨设每个拐点斜率改变1(拐点可以重合)。

则操作2直接合并凸包的所有拐点即可。

对于操作1:
Figure 1

显然每次操作1后,凸包最右端斜率为1。

所以操作2后,设 v v v d v d_v dv个儿子,则凸包最右端斜率为 d v d_v dv

因此操作1后删除拐点最大值 d v + 1 d_v+1 dv+1次,再添加2个拐点即可。

求出 d p 1 dp_1 dp1的拐点之后,由于 d p 1 , 0 = dp_{1,0}= dp1,0=树中所有边长之和,所以很容易求出 d p 1 dp_1 dp1的最小值。(删除拐点最大值 d v d_v dv次即可找出最大值所在拐点)

#include<bits/stdc++.h>
using namespace std;
#define ll long long
const int N=300005,M=N<<1;
int n,m,d[N],fa[N],rt[N],lc[M],rc[M],tot;
ll fw[N],val[M],ans;
int merge(int v,int u){
    if(!(v&&u))return v|u;
    if(val[v]<val[u])swap(v,u);
    rc[v]=merge(rc[v],u);
    if(rand()&1)swap(lc[v],rc[v]);
    return v;
}
int main(){
    static ll l,r;
    scanf("%d%d",&n,&m);
    for(int i=2;i<=n+m;i++){
        scanf("%d%lld",&fa[i],&fw[i]);
        ans+=fw[i];
        ++d[fa[i]];
    }
    for(int i=n+m;i!=1;i--){
        l=0;r=0;
        if(i<=n){
            while(--d[i])rt[i]=merge(lc[rt[i]],rc[rt[i]]);
            r=val[rt[i]];
            rt[i]=merge(lc[rt[i]],rc[rt[i]]);
            l=val[rt[i]];
            rt[i]=merge(lc[rt[i]],rc[rt[i]]);
        }
        val[++tot]=l+fw[i];
        val[++tot]=r+fw[i];
        rt[i]=merge(rt[i],merge(tot-1,tot));
        rt[fa[i]]=merge(rt[fa[i]],rt[i]);
    }
    while(d[1]--)rt[1]=merge(lc[rt[1]],rc[rt[1]]);
    while(rt[1]){
        ans-=val[rt[1]];
        rt[1]=merge(lc[rt[1]],rc[rt[1]]);
    }
    printf("%lld",ans);
    return 0;
}

Problem C 最大差分

传送门

Subtask 1

这个Subtask很简单,每次询问到 m i n , m a x min,max min,max时把区间缩小为 ( m i n , m a x ) (min,max) (min,max)继续询问即可。

#include<bits/stdc++.h>
using namespace std;
#define ll long long
namespace io{
    const int l=1<<19;
    char buf[l],*s,*t,c;
    char gc(){
        if(s==t){
            t=(s=buf)+fread(buf,1,l,stdin);
            return s==t?EOF:*s++;
        }
        return *s++;
    }
    template<class I>void gi(I &x){
        x=0;c=gc();while(c<'0'||c>'9')c=gc();
        while('0'<=c&&c<='9'){x=(x<<1)+(x<<3)+(c^48);c=gc();}
    }
};
using io::gi;

const int N=100005;

int AKAPIO,n,t;
ll l,r=1000000000000000000ll,mn,mx,a[N],s;

int main(){
	scanf("%d%d",&AKAPIO,&n);
	while(1){
		printf("? %lld %lld\n",l,r);
		fflush(stdout);
		scanf("%lld%lld",&mn,&mx);
		if(mn==-1)break;
		a[++t]=mn;
		if(mn!=mx)a[++t]=mx;
		if(t==n)break;
		l=mn+1;r=mx-1;
		if(l>r)break;
		if(r-l+1==n-t){
			for(int i=l;i<=r;i++)a[++t]=i;
			break;
		}
	}
	sort(a+1,a+n+1);
	for(int i=1;i<n;i++)s=max(s,a[i+1]-a[i]);
	printf("! %lld\n",s);
	fflush(stdout);
	return 0;
}

Subtask 2

这个Subtask比较神奇。

设整个区间最小值为 m i n min min,最大值为 m a x max max,则可以发现
a n s ≥ m a x − m i n n − 1 ans\ge\frac{max-min}{n-1} ansn1maxmin
( m i n , m a x ) (min,max) (min,max)中的数以 ⌊ m a x − m i n n − 1 ⌋ \lfloor\frac{max-min}{n-1}\rfloor n1maxmin为长度分块,不难发现块内不存在答案。

因此询问每个块中的最小值、最大值,最后考虑这些值和 m i n , m a x min,max min,max即可。

#include<bits/stdc++.h>
using namespace std;
#define ll long long
namespace io{
    const int l=1<<19;
    char buf[l],*s,*t,c;
    char gc(){
        if(s==t){
            t=(s=buf)+fread(buf,1,l,stdin);
            return s==t?EOF:*s++;
        }
        return *s++;
    }
    template<class I>void gi(I &x){
        x=0;c=gc();while(c<'0'||c>'9')c=gc();
        while('0'<=c&&c<='9'){x=(x<<1)+(x<<3)+(c^48);c=gc();}
    }
};
using io::gi;

const int N=100005;

int AKAPIO,n,t;
ll mn,mx,mn1,mx1,a[N],b,s;
int main(){
	scanf("%d%d",&AKAPIO,&n);
	printf("? 0 1000000000000000000\n");
	fflush(stdout);
	scanf("%lld%lld",&mn,&mx);
	a[++t]=mn;
	a[++t]=mx;
	b=(mx-mn)/(n-1);
	for(ll i=mn+1;i<mx;i+=b+1){
		printf("? %lld %lld\n",i,min(mx-1,i+b));
		fflush(stdout);
		scanf("%lld%lld",&mn1,&mx1);
		if(mn1!=-1){
			a[++t]=mn1;
			if(mn1!=mx1)a[++t]=mx1;
		}
	}
	sort(a+1,a+t+1);
	for(int i=1;i<t;i++)s=max(s,a[i+1]-a[i]);
	printf("! %lld\n",s);
	fflush(stdout);
	return 0;
}
  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值