ISPRS | 冻土区InSAR时序模型改进与评估:改进时序模型助力冻土区InSAR技术发展
- 1. 研究背景
- 2. 核心贡献
- 3. 实际应用与发现
- 4. 对比与验证
- 5. 共享与开源
近日,由兰州大学与香港中文大学联合研究团队在遥感领域顶级期刊《ISPRS Journal of Photogrammetry and Remote Sensing》(影响因子:10.6)发表重要研究成果《Time-Series Models for ground subsidence and heave over permafrost in InSAR Processing: A comprehensive Assessment and new Improvement》,现已开放获取(链接:https://doi.org/10.1016/j.isprsjprs.2025.02.019)。该研究针对多年冻土区独特的季节性地表形变特征,提出了创新性的时序模型改进方案,不仅优化了冻融循环导致的地表形变的表达能力,还首创了一套基于物理机制的冻土区参考点自动选取算法,显著提升了InSAR监测的精度与可靠性,为冻土区地表形变监测提供了关键的技术突破与方法学支持。该研究由兰州大学博士生范成彦(第一作者)、兰州大学教授牟翠翠(通讯作者)、香港中文大学副教授刘琳(通讯作者)以及兰州大学已故教授张廷军等多位学者共同完成。
1. 研究背景
多年冻土作为全球冰冻圈的关键组成部分,具有广泛的分布范围,蕴含大量地下冰和碳库。其退化不仅对基础设施安全构成严重威胁,还会释放大量长期封存的温室气体,同时影响珍贵的淡水资源储备。然而,由于多年冻土隐藏于地表之下,科学界一直缺乏有效的遥感监测手段来精确检测其水热状态变化。
传统地面观测方法虽然精确,但难以实现大范围监测。合成孔径雷达干涉测量(InSAR)技术通过捕捉微小的地表形变,能够间接反映冻土的水文热力动态过程,因此成为当前冻土监测的关键技术手段。
然而,传统的InSAR时序模型尚未充分考虑冻土区独特而显著的季节形变特征,这一局限性严重制约了监测精度和可靠性。解决这一技术瓶颈,对于准确评估多年冻土变化及其环境影响具有重要意义。
2. 核心贡献
- 模型创新
- 改进正弦函数模型:通过在引入半年度周期分量,该模型不仅能够表征季节形变特征,还能捕捉"冬季完全冻结阶段"特征,显著提高了对冻土区冻融循环形变特征的表达能力。此模型因其简洁而高效的特点,被强烈建议用于替换多数InSAR处理软件中默认使用的线性或二次函数模型,以改善多年冻土地表形变信号丢失问题。
- 优化基于Stefan的物理模型:基于Stefan方程的相变热力学机制,深化了冻融循环与地表形变间的理论机制及量化表达,构建了两种冻融周期无缝拼接方法,大幅提升了冻土区地表形变动态过程的模拟能力。
- 自动化参考点选择
针对传统人工选择参考点的主观性与不确定性,研究团队基于冻土区地表形变特征,开发了一套基于Stefan方程的自动选取参考点算法。该算法通过结合相干性、地形指数(TPI)等辅助数据,有效排除了冰川与冰川等覆盖物的干扰,显著提升参考点可靠性。此外,文章还提出了一种参考点不确定性评估方案,能够量化参考点所带来的不确定性及其影响比例。 - 全面的模型性能评估
该研究系统对比了传统模型与改进模型在不同应用场景(NSBAS反演中填补时序空缺、提取形变速率及幅度、自动选取参考点)中的表现,证实改进模型在多年冻土区的优越性,并为模型选择提供科学依据。
3. 实际应用与发现
研究以黑河上游多年冻土区为案例,结合2017-2023年Sentinel-1数据,揭示该区域富冰多年冻土季节形变幅度可达50-130毫米,并以-10至-20毫米/年的速度快速退化。
![]() |
---|
研究区多年冻土地表形变季节幅度及年际速率 |
4. 对比与验证
为验证模型的可靠性,研究团队开展了全面的对比分析,将InSAR反演形变、模型模拟形变与倾斜仪(tilt arm)实测地表形变数据进行系统比对。结果表明,改进模型在冻胀期和冬季完全冻结期的模拟结果与实测数据展现出极高的一致性,有力证实了模型的准确性与实用价值。然而,研究团队也观察到改进模型在融沉期的模拟结果与实测数据存在一定偏差,这种差异很可能由秋季冻结过程中活动层中的未冻水不等量迁移现象引起的。这一发现不仅为深入理解冻土区地表形变动态过程提供了宝贵的科学依据,同时也凸显了获取更多实测的地面形变数据的紧迫性,得以为未来模型的发展提供充实的理论根基和验证条件。
![]() |
---|
InSAR反演形变、模型模拟形变与倾斜仪(tilt arm)实测地表形变比对 |
5. 共享与开源
值得一提的是,研究团队在冻土区InSAR技术的改进与应用领域持续深耕,最近在解缠误差纠正领域亦取得重大突破。这一创新性成果有效解决了InSAR技术在冻土区地表形变监测中普遍存在的严重低估问题,显著提升了活动层水热状态反演的精确度和可验证性。为促进学术交流与技术推广,研究团队已将这两项重要成果整合到开源Python库中(GitHub: https://github.com/Fanchengyan/FanInSAR),为推进冻土区InSAR监测技术的发展做出积极贡献。