1.评分卡是把分值表示为比率对数的线性表达式来定义
2.求解分数的表达式需要引入两个假设:几率比(odds)和比率翻倍的分数(PDO)
3.odds是指事件发生概率与不发生概率比值,也就是坏客户与好客户的比率
4.风控模型评估指标有ROC曲线、KS值、Gini系数和Lift曲线等
5.KS和AUC一样,都是利用TPR、FPR两个指标来评价模型的整体训练效果
6.KS是TPR和FPR差值的最大值,能找到最优的阈值;AUC评价模型的整体训练效果
7.Gini系数也是衡量模型风险区分能力的指标,介于0-1之间,值越大,区分能力越大
8.Lift曲线衡量的是,与不利用模型相比,模型的预测能力“变好”了多少
本篇我们介绍风控模型评分转换逻辑与建模的评估指标。
1.转标准评分卡
风控模型基于逻辑回归建立模型,它的结果本质是一个概率值,可参考文章从【为什么要用sigmoid函数】到真的懂【逻辑回归】,但最后我们对客户资质评判是一个分数,类似与我们常见的芝麻分。那么,这个分数是怎么来的呢。我们这节来介绍。
实际上,所谓的评分转换