假设检验(三)

本文介绍了方差分析的概念,主要用于检验多个正态分布的均值是否有显著差异。通过正态性检验和方差齐性检验来验证假设,其中方差齐性检验包括Hartley、Bartlett和修正的Bartlett检验。在方差分析中,当正态性和方差齐性满足时,通过F统计量进行显著性检验。文章还强调了方差齐性检验的重要性,因为它对F检验的影响较大。
摘要由CSDN通过智能技术生成

1.方差分析是检验多个正态分布的均值问题

2.其思想是组内均方与组间均方是否有显著差异,从而构造F检验统计量

3.方差分析有三假设:每一总体服从正态分布(假设1)且各总体方差相同(假设2),试验结果相互独立(假设3)

4.用正态性检验可以验证假设1,方差齐性检验验证假设2

5.方差齐性检验最常用的有Hartley检验、Bartlett检验、修正的Bartlett检验

6.Hartley检验适用样本量相等场合;Bartlett检验要求每个样本量不低于5,修正的Bartlett检验适用所有情况

【假设检验战略地图】

本篇介绍多个正态分布均值的比较问题,也就是方差分析(ANOVA)

1.单因子方差分析

若只考察一个因子,称其为单因子试验.通常,在单因子试验中,记因子为A,设其有r个水平,记为A1,A2,…,Ar,在每一水平下考察的指标可以看成一个总体,现有r个水平,故有r个总体,假定∶

事实上,这三个假定都是可以进行检验的。假设(1)利用正态性检验(非参数检验的一种)验证其成立;假设(2)用方差齐性检验(本篇介绍)验证成立。

在上面假设成立下,要检验的是是比较各水平下的均值是否相同,即要对如下的一个假设进行检验:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

整得咔咔响

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值