1.方差分析是检验多个正态分布的均值问题
2.其思想是组内均方与组间均方是否有显著差异,从而构造F检验统计量
3.方差分析有三假设:每一总体服从正态分布(假设1)且各总体方差相同(假设2),试验结果相互独立(假设3)
4.用正态性检验可以验证假设1,方差齐性检验验证假设2
5.方差齐性检验最常用的有Hartley检验、Bartlett检验、修正的Bartlett检验
6.Hartley检验适用样本量相等场合;Bartlett检验要求每个样本量不低于5,修正的Bartlett检验适用所有情况
【假设检验战略地图】
本篇介绍多个正态分布均值的比较问题,也就是方差分析(ANOVA)
1.单因子方差分析
若只考察一个因子,称其为单因子试验.通常,在单因子试验中,记因子为A,设其有r个水平,记为A1,A2,…,Ar,在每一水平下考察的指标可以看成一个总体,现有r个水平,故有r个总体,假定∶
事实上,这三个假定都是可以进行检验的。假设(1)利用正态性检验(非参数检验的一种)验证其成立;假设(2)用方差齐性检验(本篇介绍)验证成立。
在上面假设成立下,要检验的是是比较各水平下的均值是否相同,即要对如下的一个假设进行检验: