瓜书学习之路(一)

瓜书学习之路(一)

第一篇,字丑了点,自己将就着看。

一元线性回归公式推导

求解偏置b的公式推导

推导思路:
    1.最小二乘法计算出损失函数E(w, b)
    2.证明损失函数是关于w和b的凸函数(国内是凹函数)
    (凹凸函数的定义与国内相反)
    3.对损失函数E(w, b)关于b求一阶偏导数
    4.令一阶偏导数为0求出b
    最小二乘法,二乘指的是平方

推导过程:
    1.求E(w, b)

最小二乘法求E(w, b)
2.凸函数
根据二阶连续偏导,判断凹凸性。
求二阶偏导判断凹凸性 1
2
3
4

5
6

    3.求w, b

1
2

    4. 向量化

1
2

多元线性回归公式推导

求解权重w的公式推导

推导思路:
    1. 由最小二乘法得出损失函数Ew
    2. 证明损失函数Ew是关于W的凸函数
    3. 对损失函数Ew关于w求一阶导数
    4. 令一阶导数等于0 求出w


    凸集定义:集合D属于R^n,对于任意的X,Y属于D与任意的a属于[0, 1],有aX + (1 - a)Y属于D,则称集合D是凸集



    凸集集合意义:若两个点属于此集合,则两点连线上的任意一点均属于该集合

    梯度定义

梯度定义
Hessian矩阵定义
Hessian矩阵定义
多元实值函数凹凸性判定定理
在这里插入图片描述
过程
1
2
3

对数几率回归

广义线性模型

1. 指数族分布
    指数族分布形如
     
2. 广义线性模型的三条假设

    1. 在给定X的条件下,假设随机变量Y服从某个指数族分布
    2. 在给定X的条件下。我们的目标得到一个模型h(x)能预测出T(y)的期望值
    3. 假设该指数族分布中的自然参数η和X呈线性关系,即η = W的转置与X的乘积
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值