瓜书学习之路(一)
第一篇,字丑了点,自己将就着看。
一元线性回归公式推导
求解偏置b的公式推导
推导思路:
1.最小二乘法计算出损失函数E(w, b)
2.证明损失函数是关于w和b的凸函数(国内是凹函数)
(凹凸函数的定义与国内相反)
3.对损失函数E(w, b)关于b求一阶偏导数
4.令一阶偏导数为0求出b
最小二乘法,二乘指的是平方
推导过程:
1.求E(w, b)
2.凸函数
根据二阶连续偏导,判断凹凸性。
3.求w, b
4. 向量化
多元线性回归公式推导
求解权重w的公式推导
推导思路:
1. 由最小二乘法得出损失函数Ew
2. 证明损失函数Ew是关于W的凸函数
3. 对损失函数Ew关于w求一阶导数
4. 令一阶导数等于0 求出w
凸集定义:集合D属于R^n,对于任意的X,Y属于D与任意的a属于[0, 1],有aX + (1 - a)Y属于D,则称集合D是凸集
凸集集合意义:若两个点属于此集合,则两点连线上的任意一点均属于该集合
梯度定义
Hessian矩阵定义
多元实值函数凹凸性判定定理
过程
对数几率回归
广义线性模型
1. 指数族分布
指数族分布形如
2. 广义线性模型的三条假设
1. 在给定X的条件下,假设随机变量Y服从某个指数族分布
2. 在给定X的条件下。我们的目标得到一个模型h(x)能预测出T(y)的期望值
3. 假设该指数族分布中的自然参数η和X呈线性关系,即η = W的转置与X的乘积