- 博客(5)
- 收藏
- 关注
原创 EM算法一些总结
EM算法一些总结最大似然估计(模型没有隐变量)EM算法(模型包含隐变量)凸函数以及Jensen不等式基于下界的优化E-step:构造似然函数的下界 l(θ∣θn)l(\theta|\theta_n)l(θ∣θn)M-step: 优化 l(θ∣θn)l(\theta|\theta_n)l(θ∣θn)常看常新,这次把EM算法的一些关键的思想总结下来当作一个备忘。主要的参考文献有一些网友博客,还有一些tutorial。Sean Borman. The Expectation Maximization A
2021-11-23 19:05:30
430
原创 WSL(Ubuntu terminal environment with Windows Subsystem for Linux)实用指令
WSL挺好用的,不用再安装VMWare了。具体的安装教程:https://ubuntu.com/wsl将Windows中的文件复制到Linux中cp /mnt/c/Users/Administrator/Desktop/FileName /home/Username将windows系统中/mnt/c/Users/Administrator/Desktop目录下的FileName文件,复制到Liunx系统下的/home/Username目录下。其中,FileName是你要复制的文件名字,Userna
2020-09-29 14:41:37
323
原创 Python安装shapely包出现WindowsError: [Error 126]解决方案
Python安装shapely包出现WindowsError: [Error 126]解决方案报错目的是安装egtplot,要用到shapely。安装完之后所有都安装好了,但是import egtplot报错了。网上有一些解决方案,不管用。错误如下:具体操作conda config --add channels conda-forgeconda install shapely解决过程相关网页[1] https://gis.stackovernet.xyz/cn/q/17211[2] h
2020-09-26 17:23:20
2060
原创 skip-gram笔记
skip-gram作为经典的词表示模型,其最终目的就是给定一个单词,预测其它单词出现的概率。首先给出构成这个模型的基本组件和定义:one-hot vector: wiw_iwi,为中心节点的独热表示,大小为 1×V1\times V1×V, VVV为节点个数;First matrix:W1W_1W1,第一个矩阵,大小为 V×dV\times dV×d,每一行表示一个节点的表示向量;S...
2019-12-16 17:08:56
224
原创 node2vec核心思想
node2vec核心思想[kdd2016] node2vec: Scalable Feature Learning for Networksnode2vec的核心在于得到从每一个节点uuu出发,定长lll的随机游走序列集合,进而得到每个节点的“新邻居”,然后用word2vec的思想来学习更新每一个节点的表示向量。目标:\textbf{目标:}目标:假定一个随机游走序列→t→v→\right...
2019-06-17 15:19:39
1097
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人