一、题目
我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?
二、解题思路
当 n > 2 n\gt2 n>2时,矩形覆盖最后一步覆盖的方法有两种:
- 最后用了一个竖着的2*1小矩形进行覆盖,如图
- 最后用了一个横着的2*1小矩形进行覆盖,如图
如果最后用了一个横着的2*1小矩形进行覆盖,那么最后两个2*1的小矩形的覆盖情况必然如下:
所以,用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形相当于
- 用n-1个2*1的小矩形无重叠地覆盖一个2*(n-1) 的大矩形最后用1个竖着的2*1小矩形进行覆盖
- 用n-2个2*1的小矩形无重叠地覆盖一个2*(n-1) 的大矩形最后用2个横着的2*1小矩形进行覆盖
1.和2.两者之和,由此可得出以下递推公式:
f ( n ) = { n , n ≤ 2 f ( n − 1 ) + f ( n − 2 ) , n > 2 f(n)= \begin{cases} n, & n \le 2 \\ f(n-1)+f(n-2), & n \gt 2 \end{cases} f(n)={n,f(n−1)+f(n−2),n≤2n>2
分析到这里不难发现本题的本质就是斐波那契数列问题。因此解题的方法也基本相同。
三、解题方法
代码实现使用 Python 2.7.3。
(一)递归
我们用递归算法就能够轻易实现以上式子,时间复杂度为 O ( n 2 ) O(n^2) O(n2)。
# -*- coding:utf-8 -*-
class Solution:
def rectCover(self, number):
if number <= 2:
return number
else:
return self.rectCover(n-1) + self.rectCover(n-2)
虽然用递归算法来实现是很自然又很简单的想法,但是其时间复杂度太高,其时间复杂度高的原因是,重复计算了很多不必要的数值。我们用计算
f
(
5
)
f(5)
f(5)来说明问题:
可以看到,在计算
f
(
5
)
f(5)
f(5)时,
f
(
3
)
f(3)
f(3)重复计算了两遍。
(二)遍历
由于递归算法产生了很多不必要的重复计算,导致时间复杂度很高。为了降低时间复杂度,我们首先的想法就是避免重复计算。
我们考虑对于任意一个 N N N,我们从第一项开始计算,并将所有的中间结果保存下来,这样在计算 f ( n ) f(n) f(n)时,只需要通过查表直接获取 f ( n − 1 ) f(n-1) f(n−1)和 f ( n − 2 ) f(n-2) f(n−2)的值计算即可,时间复杂度减少为 O ( n ) O(n) O(n)。
# -*- coding:utf-8 -*-
class Solution:
def rectCover(self, number):
if number <= 2:
return number
else:
array = [1, 2]
for i in range(2, number):
array.append(array[i-1]+array[i-2])
return array[-1]
(三)矩阵乘法
实际上,遍历的方法还不是最优的,本题最优的解决方法的时间复杂度只需要 O ( log n ) O(\log n) O(logn)。
f
(
n
)
=
f
(
n
−
1
)
+
f
(
n
−
2
)
f(n)=f(n-1)+f(n-2)
f(n)=f(n−1)+f(n−2)是一个二阶递推数列,一定可以用矩阵乘法的形式表示,即状态矩阵为
2
×
2
2\times2
2×2的矩阵:
[
f
(
n
)
f
(
n
−
1
)
]
=
[
f
(
n
−
1
)
f
(
n
−
2
)
]
[
a
b
c
d
]
\begin{bmatrix} f(n) & f(n-1) \end{bmatrix}= \begin{bmatrix} f(n-1) & f(n-2) \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix}
[f(n)f(n−1)]=[f(n−1)f(n−2)][acbd]可以解得
a
=
b
=
c
=
1
,
d
=
0
a=b=c=1,d=0
a=b=c=1,d=0。再通过归纳法可得:
[ f ( n ) f ( n − 1 ) ] = [ f ( n − 1 ) f ( n − 2 ) ] [ 1 1 1 0 ] = [ f ( n − 2 ) f ( n − 3 ) ] [ 1 1 1 0 ] 2 = ⋯ ⋯ = [ f ( 2 ) f ( 1 ) ] [ 1 1 1 0 ] n − 2 = [ 2 1 ] [ 1 1 1 0 ] n − 2 \begin{aligned} \begin{bmatrix} f(n) & f(n-1) \end{bmatrix} &= \begin{bmatrix} f(n-1) & f(n-2) \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \\ &= \begin{bmatrix} f(n-2) & f(n-3) \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^2 \\ &= \cdots\cdots \\ &= \begin{bmatrix} f(2) & f(1) \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{n-2} \\ &= \begin{bmatrix} 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{n-2} \end{aligned} [f(n)f(n−1)]=[f(n−1)f(n−2)][1110]=[f(n−2)f(n−3)][1110]2=⋯⋯=[f(2)f(1)][1110]n−2=[21][1110]n−2这样,求斐波那契数列第N项的问题就变成了如何用最快的方法求一个矩阵N次方的问题。
求整数N次方的问题与求矩阵N次方的问题同理。为了表示方便,用求一个整数N次方的例子来说明。快速求 1 0 11 10^{11} 1011的过程如下:
- 11的二进制形式为1011
- 1 0 11 = 1 0 1 × 8 × 1 0 0 × 4 × 1 0 1 × 2 × 1 0 1 × 1 10^{11}=10^{1\times8}\times10^{0\times4}\times10^{1\times2}\times10^{1\times1} 1011=101×8×100×4×101×2×101×1
在这个过程中,我们先求出 1 0 1 10^1 101,然后根据 1 0 1 10^1 101求出 1 0 2 10^2 102,再根据 1 0 2 10^2 102求出 1 0 4 10^4 104,…,最后求出 1 0 8 10^8 108。因此,11的二进制数形式总共多少位,就使用了几次乘法
然后把应该累乘的值相乘即可,即 1 0 8 10^8 108、 1 0 2 10^2 102、 1 0 1 10^1 101应该累乘,因为8、2、1对应到11的二进制数中,相应位上是1;而 1 0 4 10^4 104不应该累乘,因为4对应到11的二进制数中,相应位上是0。
# -*- coding:utf-8 -*-
class Solution:
def rectCover(self, number):
if number <= 2:
return number
else:
array = [[1, 1], [1, 0]]
res = [[1, 0], [0, 1]]
times = number - 2
while times:
if (times&1) != 0:
a = res[0][0]*array[0][0] + res[0][1]*array[1][0]
b = res[0][0]*array[0][1] + res[0][1]*array[1][1]
c = res[1][0]*array[0][0] + res[1][1]*array[1][0]
d = res[1][0]*array[0][1] + res[1][1]*array[1][1]
res[0][0], res[0][1], res[1][0], res[1][1] = a, b, c, d
a = array[0][0]*array[0][0] + array[0][1]*array[1][0]
b = array[0][0]*array[0][1] + array[0][1]*array[1][1]
c = array[1][0]*array[0][0] + array[1][1]*array[1][0]
d = array[1][0]*array[0][1] + array[1][1]*array[1][1]
array[0][0], array[0][1], array[1][0], array[1][1] = a, b, c, d
times = times >> 1
return 2 * res[0][0] + res[1][0]