【算法】矩形覆盖

一、题目

我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?

二、解题思路

n > 2 n\gt2 n>2时,矩形覆盖最后一步覆盖的方法有两种:

  1. 最后用了一个竖着的2*1小矩形进行覆盖,如图
    在这里插入图片描述
  2. 最后用了一个横着的2*1小矩形进行覆盖,如图
    在这里插入图片描述如果最后用了一个横着的2*1小矩形进行覆盖,那么最后两个2*1的小矩形的覆盖情况必然如下:
    在这里插入图片描述

所以,用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形相当于

  1. n-12*1的小矩形无重叠地覆盖一个2*(n-1) 的大矩形最后用1个竖着的2*1小矩形进行覆盖
  2. n-22*1的小矩形无重叠地覆盖一个2*(n-1) 的大矩形最后用2个横着的2*1小矩形进行覆盖

1.和2.两者之和,由此可得出以下递推公式:

f ( n ) = { n , n ≤ 2 f ( n − 1 ) + f ( n − 2 ) , n > 2 f(n)= \begin{cases} n, & n \le 2 \\ f(n-1)+f(n-2), & n \gt 2 \end{cases} f(n)={n,f(n1)+f(n2),n2n>2

分析到这里不难发现本题的本质就是斐波那契数列问题。因此解题的方法也基本相同。

三、解题方法

代码实现使用 Python 2.7.3。

(一)递归

我们用递归算法就能够轻易实现以上式子,时间复杂度为 O ( n 2 ) O(n^2) O(n2)

# -*- coding:utf-8 -*-
class Solution:
    def rectCover(self, number):
	    if number <= 2:
            return number
        else:
            return self.rectCover(n-1) + self.rectCover(n-2)

虽然用递归算法来实现是很自然又很简单的想法,但是其时间复杂度太高,其时间复杂度高的原因是,重复计算了很多不必要的数值。我们用计算 f ( 5 ) f(5) f(5)来说明问题:
在这里插入图片描述
可以看到,在计算 f ( 5 ) f(5) f(5)时, f ( 3 ) f(3) f(3)重复计算了两遍。

(二)遍历

由于递归算法产生了很多不必要的重复计算,导致时间复杂度很高。为了降低时间复杂度,我们首先的想法就是避免重复计算

我们考虑对于任意一个 N N N,我们从第一项开始计算,并将所有的中间结果保存下来,这样在计算 f ( n ) f(n) f(n)时,只需要通过查表直接获取 f ( n − 1 ) f(n-1) f(n1) f ( n − 2 ) f(n-2) f(n2)的值计算即可,时间复杂度减少为 O ( n ) O(n) O(n)

# -*- coding:utf-8 -*-
class Solution:
    def rectCover(self, number):
        if number <= 2:
            return number
        else:
            array = [1, 2]
            for i in range(2, number):
                array.append(array[i-1]+array[i-2])
            return array[-1]

(三)矩阵乘法

实际上,遍历的方法还不是最优的,本题最优的解决方法的时间复杂度只需要 O ( log ⁡ n ) O(\log n) O(logn)

f ( n ) = f ( n − 1 ) + f ( n − 2 ) f(n)=f(n-1)+f(n-2) f(n)=f(n1)+f(n2)是一个二阶递推数列,一定可以用矩阵乘法的形式表示,即状态矩阵为 2 × 2 2\times2 2×2的矩阵:
[ f ( n ) f ( n − 1 ) ] = [ f ( n − 1 ) f ( n − 2 ) ] [ a b c d ] \begin{bmatrix} f(n) &amp; f(n-1) \end{bmatrix}= \begin{bmatrix} f(n-1) &amp; f(n-2) \end{bmatrix} \begin{bmatrix} a &amp; b \\ c &amp; d \end{bmatrix} [f(n)f(n1)]=[f(n1)f(n2)][acbd]可以解得 a = b = c = 1 , d = 0 a=b=c=1,d=0 a=b=c=1,d=0。再通过归纳法可得:

[ f ( n ) f ( n − 1 ) ] = [ f ( n − 1 ) f ( n − 2 ) ] [ 1 1 1 0 ] = [ f ( n − 2 ) f ( n − 3 ) ] [ 1 1 1 0 ] 2 = ⋯ ⋯ = [ f ( 2 ) f ( 1 ) ] [ 1 1 1 0 ] n − 2 = [ 2 1 ] [ 1 1 1 0 ] n − 2 \begin{aligned} \begin{bmatrix} f(n) &amp; f(n-1) \end{bmatrix} &amp;= \begin{bmatrix} f(n-1) &amp; f(n-2) \end{bmatrix} \begin{bmatrix} 1 &amp; 1 \\ 1 &amp; 0 \end{bmatrix} \\ &amp;= \begin{bmatrix} f(n-2) &amp; f(n-3) \end{bmatrix} \begin{bmatrix} 1 &amp; 1 \\ 1 &amp; 0 \end{bmatrix}^2 \\ &amp;= \cdots\cdots \\ &amp;= \begin{bmatrix} f(2) &amp; f(1) \end{bmatrix} \begin{bmatrix} 1 &amp; 1 \\ 1 &amp; 0 \end{bmatrix}^{n-2} \\ &amp;= \begin{bmatrix} 2 &amp; 1 \end{bmatrix} \begin{bmatrix} 1 &amp; 1 \\ 1 &amp; 0 \end{bmatrix}^{n-2} \end{aligned} [f(n)f(n1)]=[f(n1)f(n2)][1110]=[f(n2)f(n3)][1110]2==[f(2)f(1)][1110]n2=[21][1110]n2这样,求斐波那契数列第N项的问题就变成了如何用最快的方法求一个矩阵N次方的问题。

求整数N次方的问题与求矩阵N次方的问题同理。为了表示方便,用求一个整数N次方的例子来说明。快速求 1 0 11 10^{11} 1011的过程如下:

  1. 11的二进制形式为1011
  2. 1 0 11 = 1 0 1 × 8 × 1 0 0 × 4 × 1 0 1 × 2 × 1 0 1 × 1 10^{11}=10^{1\times8}\times10^{0\times4}\times10^{1\times2}\times10^{1\times1} 1011=101×8×100×4×101×2×101×1

在这个过程中,我们先求出 1 0 1 10^1 101,然后根据 1 0 1 10^1 101求出 1 0 2 10^2 102,再根据 1 0 2 10^2 102求出 1 0 4 10^4 104,…,最后求出 1 0 8 10^8 108。因此,11的二进制数形式总共多少位,就使用了几次乘法

然后把应该累乘的值相乘即可,即 1 0 8 10^8 108 1 0 2 10^2 102 1 0 1 10^1 101应该累乘,因为8、2、1对应到11的二进制数中,相应位上是1;而 1 0 4 10^4 104不应该累乘,因为4对应到11的二进制数中,相应位上是0。

# -*- coding:utf-8 -*-
class Solution:
    def rectCover(self, number):
        if number <= 2:
            return number
        else:
            array = [[1, 1], [1, 0]]
            res = [[1, 0], [0, 1]]
            
            times = number - 2
            while times:
                if (times&1) != 0:
                    a = res[0][0]*array[0][0] + res[0][1]*array[1][0]
                    b = res[0][0]*array[0][1] + res[0][1]*array[1][1]
                    c = res[1][0]*array[0][0] + res[1][1]*array[1][0]
                    d = res[1][0]*array[0][1] + res[1][1]*array[1][1]

                    res[0][0], res[0][1], res[1][0], res[1][1] = a, b, c, d
                
                a = array[0][0]*array[0][0] + array[0][1]*array[1][0]
                b = array[0][0]*array[0][1] + array[0][1]*array[1][1]
                c = array[1][0]*array[0][0] + array[1][1]*array[1][0]
                d = array[1][0]*array[0][1] + array[1][1]*array[1][1]

                array[0][0], array[0][1], array[1][0], array[1][1] = a, b, c, d

                times = times >> 1
                
            return 2 * res[0][0] + res[1][0]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值