【R语言】非线性最小二乘

以误差的平方和最小为准则来估计非线性静态模型参数的一种参数估计方法。设非线性系统的模型为y=f(x,θ),常用于传感器参数设定。

线性和非线性回归的目的是调整模型参数的值,以找到最接近您的数据的线或曲线。在找到这些值时,我们将能够以良好的精确度估计响应变量。

在最小二乘回归中,我们建立了一个回归模型,其中来自回归曲线的不同点的垂直距离的平方和被最小化。我们通常从定义的模型开始,并假设系数的一些值。然后我们应用R语言的nls()函数获得更准确的值以及置信区间。

在R语言中创建非线性最小二乘测试的基本语法:

nls(formula, data, start)
  • 以下是所使用的参数的描述 -
  • formula是包括变量和参数的非线性模型公式。

  • data是用于计算公式中变量的数据框。

  • start是起始估计的命名列表或命名数字向量。

例 我们将考虑一个假设其系数的初始值的非线性模型。 接下来,我们将看到这些假设值的置信区间是什么,以便我们可以判断这些值在模型中有多好。所以让我们考虑下面的方程为这个目的:

a = b1*x^2+b2
xvalues <- c(1.6,2.1,2,2.23,3.71,3.25,3.4,3.86,1.19,2.21)
yvalues <- c(5.19,7.43,6.94,8.11,18.75,14.88,16.06,19.12,3.21,7.58)

# Give the chart file a name.
png(file = "nls.png")


# Plot these values.
plot(xvalues,yvalues)


# Take the assumed values and fit into the model.
model <- nls(yvalues ~ b1*xvalues^2+b2,start = list(b1 = 1,b2 = 3))

# Plot the chart with new data by fitting it to a prediction from 100 data points.
new.data <- data.frame(xvalues = seq(min(xvalues),max(xvalues),len = 100))
lines(new.data$xvalues,predict(model,newdata = new.data))

# Save the file.
dev.off()

# Get the sum of the squared residuals.
print(sum(resid(model)^2))

# Get the confidence intervals on the chosen values of the coefficients.
print(confint(model))

运行结果:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值