pandas练习01

探索Chipotle快餐数据

chipotle.tsv
1.将数据集存入一个名为chipo的数据框内

import pandas as pd

chipo = pd.read_csv("./data/chipotle.tsv" sep='\t')

2.查看前10行内容

chipo.head(10)

在这里插入图片描述
3.数据集中有多少个列(columns)?

chipo.shape[1]  
 # 5

4.打印出全部的列名称

chipo.columns  

# Index(['order_id', 'quantity', 'item_name', 'choice_description',
       'item_price'],
      dtype='object')

5.数据集的索引是怎样的?

# 查看索引
chipo.index
# RangeIndex(start=0, stop=4622, step=1)

6.被下单数最多商品(item)是什么? 显示前5个

chipo[['item_name','quantity']].groupby(['item_name'],as_index=False).sum().sort_values(by=['quantity'],ascending=False).head()

在这里插入图片描述
7.在item_name这一列中,一共有多少种商品被下单?

chipo['item_name'].nunique()
# 50

8.在choice_description中,下单次数最多的商品是什么?显示前5个

chipo[['choice_description','quantity']].groupby(['choice_description'], as_index=False).sum().sort_values(by=['quantity'],ascending=False).head()

在这里插入图片描述
9.一共有多少商品被下单?

chipo['quantity'].sum()
# 4972

10.将item_price转换为浮点数

chipo['item_price'] = chipo['item_price'].apply(lambda x: float(x[1:]))

11.在该数据集对应的时期内,收入(revenue)是多少?

chipo['revenue'] = round(chipo['item_price'] * chipo['quantity'],2)
chipo['revenue'].sum()    
# 39237.02

12.在该数据集对应的时期内,一共有多少订单?

chipo['order_id'].nunique()
# 1834

13.每一单(order)对应的平均总价是多少?

chipo['item_price_sum'] = chipo['quantity'] * chipo['item_price']
(chipo[['order_id','item_price_sum']].groupby(['order_id']).sum()).mean()
# item_price_sum    21.394231
dtype: float64
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值