最小二乘法与梯度下降法的区别?

本文介绍了最小二乘法在线性回归中的应用,强调了线性回归模型假设的重要性以及能够得到全局最优解的特性。同时,讨论了广义最小二乘法在深度神经网络优化中的局限性,指出在非线性问题中,如DNN,最小二乘法通常不如梯度下降法结合交叉熵准则有效。
摘要由CSDN通过智能技术生成

    狭义的最小二乘法:指的是在线性回归下采用最小二乘准则(或者说叫做最小平方),进行线性拟合参数求解的、矩阵形式的公式方法。所以,这里的(最小二乘法)应叫做最小二乘算法)或者(最小二乘方法,百度百科【最小二乘法】词条中对应的英文为(The least squaremethod)

  这里,基于线性回归,有两个细节比较重要:

  第一,线性回归的模型假设。这是最小二乘方法的优越性前提,否则不能推出最小二乘是最佳(即方差最小)的无偏估计,具体请参考高斯-马尔科夫定理。特别地,当随机噪声服从正态分布时,最小二乘与最大似然等价。

  第二,由于是线性回归/拟合,因此可以很容易的求出全局最优的闭式解(close form solution)即:全局最优解,也即我们通常看到的那几个矩阵形式,给了(input data)可以一步到位计算出拟合参数,而不是像梯度下降法或者牛顿法那样一点点地迭代优化调参,最后到达极值点,即:局部最优解,二者得到的参数值可能会相同或特别接近。


  广义的最小二乘法:是最小二乘准则,本质上是一种evaluation ru

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值