Linux Nvidia显卡驱动安装

1 概述

因为某些需要需要在Linux上安装显卡驱动,这里记录一下安装过程。

2 环境

  • Manjaro
  • RTX 2060

3 下载驱动安装包

到官网上搜索下载即可,可以戳这里

在这里插入图片描述

选择自己的显卡型号即可,笔者选择参考如下:

在这里插入图片描述

搜索下载即可,下载之后是一个.run文件,加上执行权限:

sudo chmod u+x NVIDIA-Linux-x86_64-455.28.run

4 准备工作

4.1 安装linux-header

安装之前先安装linux-header,首先获取内核版本号:

uname -a

在这里插入图片描述

笔者这里是5.8版本的,搜索linux-header并选择5.8版本进行安装:

在这里插入图片描述

命令如下:

pacman -Ss linux-header
sudo pacman -S linux58-headers

4.2 禁用Nouveau

一般来说安装Manjaro会自动安装开源显卡驱动Nouveau,需要手动禁用才能安装Nvidia驱动,创建如下文件:

sudo vim /etc/modprobe.d/blacklist.conf

输入如下内容:

blacklist nouveau

添加blacklist后是不能进入图形界面的,为了保险起见可以先不删除Nouveau驱动以防误操作无法进入图形界面。

4.3 重启

重启之后,正常来说是不能进入图形界面的(笔者单显卡环境是不能进入的,双显卡的不确定请自行测试),通过Ctrl+Alt+F2切换到终端后输入:

lsmod | grep nouveau

若没有任何输出则表明已经禁用了Nouveau

注意这一步很重要,一定要禁用,否则无法安装Nvidia驱动。

5 正式安装

下面进行正式安装操作,重启并通过Ctrl+Alt+F2切换到终端后,并以root登录后,进入安装包对应文件夹,安装即可:

 ./NVIDIA-Linux-x86_64-455.28.run 

如果在终端出现如下情况:

在这里插入图片描述

表明没有关闭图形界面,因为上面禁用了Nouveau,是无法进入图形界面的,这种情况一般出现在双显卡的电脑上,手动关闭图形界面即可:

systemctl status lightdm
systemctl stop lightdm

安装有几个简单的选项根据个人需要选择是或否即可,安装过程非常快,完成后会提示安装完成xxx complete,重启即可进入图形界面。

6 收尾工作

重启进入图形界面后可以输入

nvidia-smi

查看显卡运行状况,输入

nvidia-settings

可以查看图形界面的配置:

在这里插入图片描述

这样就算安装完成了,另外笔者测试的时候发现双屏显示需要进行手动的设置,如下图所示:

在这里插入图片描述

需要手动设置一下双屏的位置,不然的话会重叠在一起。

另外nvidia-settings的设置是临时的,想要保存到文件需要root写入权限:

sudo nvidia-settings

在这里插入图片描述

7 关于画面撕裂

安装驱动后,笔者使用flameshot截个图都难受了,鼠标基本动不了,以为是截图工具的问题,换了deepin-screenshot也是这样,接着去查了一下这应该是一个叫“画面撕裂”的现象,笔者通过一个简单的设置解决了:

在这里插入图片描述

在这里插入图片描述

记得保存到文件。

### LinuxNVIDIA 显卡驱动、CUDA 和 cuDNN 的安装教程 #### 1. 安装 NVIDIA 显卡驱动 在 Ubuntu 上安装 NVIDIA 显卡驱动可以通过图形界面完成,也可以通过命令行操作。推荐方法如下: - 打开 *软件和更新* 中的 *附加驱动* 页面,在可用选项中选择带有 `NVIDIA` 字样的驱动程序并应用更改[^2]。 如果需要手动安装或者禁用默认的 Nouveau 驱动,则可以执行以下步骤: ```bash sudo apt update sudo apt install linux-headers-$(uname -r) sudo modprobe -r nouveau && sudo bash -c "echo blacklist nouveau > /etc/modprobe.d/blacklist-nouveau.conf" sudo reboot ``` 重启后下载对应版本的 NVIDIA 驱动包,并运行安装脚本[^3]: ```bash chmod +x NVIDIA-Linux-x86_64-version.run sudo ./NVIDIA-Linux-x86_64-version.run ``` #### 2. 升级或安装 CUDA 工具包 为了确保兼容性和性能优化,建议先确认已安装NVIDIA 驱动版本是否支持目标 CUDA 版本。 对于特定版本如 CUDA 10.1 可以按照官方文档说明进行配置[^1]。通常情况下可通过 APT 或者本地 RUN 文件两种方式实现安装过程。APT 方法较为简便: ```bash wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntuXX/x86_64/cuda-keyring_1.0-1_all.deb sudo dpkg -i cuda-keyring_1.0-1_all.deb sudo apt-get update sudo apt-get -y install cuda-10-1 ``` 完成后记得设置环境变量以便后续调用工具链正常工作: ```bash export PATH=/usr/local/cuda-10.1/bin:$PATH export LD_LIBRARY_PATH=/usr/local/cuda-10.1/lib64:$LD_LIBRARY_PATH source ~/.bashrc ``` #### 3. 配置 cuDNN 库文件 cuDNN 是针对深度学习框架加速而设计的一套高性能库集合。其依赖于基础 CUDA 平台之上构建而成。获取合法授权后的 cuDNN 压缩档需解压到指定目录下覆盖原有内容: 假设当前路径存在 tar.gz 形式的压缩包形式: ```bash tar zxvf cudnn-X-linux-x64-vY.Y.ZZ.tgz sudo cp cuda/include/cudnn*.h /usr/local/cuda/include/ sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64/ sudo chmod a+r /usr/local/cuda/include/cudnn*.h /usr/local/cuda/lib64/libcudnn* ``` 最后验证整个流程无误可尝试编译示例项目来检测功能完整性。 ```python import tensorflow as tf print(tf.test.is_built_with_cuda()) # 输出 True 表明成功启用GPU计算能力 ```
评论 5
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

氷泠

欢迎打赏,您的打赏是我前进的动

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值