实现对素数的判断
验证“哥德巴赫猜想” (20分)
数学领域著名的“哥德巴赫猜想”的大致意思是:任何一个大于2的偶数总能表示为两个素数之和。比如:24=5+19,其中5和19都是素数。本实验的任务是设计一个程序,验证20亿以内的偶数都可以分解成两个素数之和。
输入格式:
输入在一行中给出一个(2, 2 000 000 000]范围内的偶数N。
输出格式:
在一行中按照格式“N = p + q”输出N的素数分解,其中p ≤ q均为素数。又因为这样的分解不唯一(例如24还可以分解为7+17),要求必须输出所有解中p最小的解。
输入样例:
24
输出样例:
24 = 5 + 19
#include<stdio.h>
int prime(int a) { //如果a为素数,返回a,否则返回0
int m = 0;
for (int i = 2; i < a; i++) {
if (a % i != 0) {
m = 0;
}
else
return 0;
}
if (m == 0)
return a;
}
int main(void){
int n;
scanf("%d",&n);
if(n%2!=0)
return 0;
for(int i=2;i<2000000010;i++){
if(prime(i)+prime(n-i)==n){
printf("%d = %d + %d",n,i,n-i);
break;
}
}
return 0;
}
此代码虽然可以实现对素数的判断,但由于循环判断次数过大
会运行超时
以下为正解(素数算法)
区别为返回值的不同
#include<stdio.h>
#include "math.h"
int prime(int a) { //如果a为素数,返回1,否则返回0
int b = (int)sqrt(a);
for (int i = 2; i <= b; i++) {
if (a % i == 0) {
return 0;
}
}
return 1;
}
int main(){
int n;
scanf("%d",&n);
if(n%2!=0)
return 0;
for(int i=2;i<=n;i++){
if(prime(i)&&prime(n-i)){ //若为真
printf("%d = %d + %d",n,i,n-i);
break;
}
}
return 0;
}
#include<stdio.h>
#include<math.h>
int prime(int a) { //如果a为素数,返回a,否则返回0
int m = 0,b=(int)sqrt(a);
for (int i = 2; i <= b; i++) {
if (a % i != 0) {
m = 0;
}
else
return 0;
}
if (m == 0)
return a;
}
int main(void){
int n;
scanf("%d",&n);
if(n%2!=0)
return 0;
for(int i=2;i<2000000010;i++){
if(prime(i)+prime(n-i)==n){
printf("%d = %d + %d",n,i,n-i);
break;
}
}
return 0;
}
注:
sqrt 定义在 math.h 中
取根号
采用数学方法可证明只需循环 sqrt(a) 次