函数与递归

实现对素数的判断

验证“哥德巴赫猜想” (20分)
数学领域著名的“哥德巴赫猜想”的大致意思是:任何一个大于2的偶数总能表示为两个素数之和。比如:24=5+19,其中5和19都是素数。本实验的任务是设计一个程序,验证20亿以内的偶数都可以分解成两个素数之和。

输入格式:
输入在一行中给出一个(2, 2 000 000 000]范围内的偶数N。

输出格式:
在一行中按照格式“N = p + q”输出N的素数分解,其中p ≤ q均为素数。又因为这样的分解不唯一(例如24还可以分解为7+17),要求必须输出所有解中p最小的解。

输入样例:
24
输出样例:
24 = 5 + 19

#include<stdio.h>
int prime(int a) {         //如果a为素数,返回a,否则返回0
    int m = 0;
    for (int i = 2; i < a; i++) {
        if (a % i != 0) {
            m = 0;
        }
        else
            return 0;
    }
        if (m == 0)
            return a;
    }
int main(void){
    int n;
    scanf("%d",&n);
    if(n%2!=0)
        return 0;
    for(int i=2;i<2000000010;i++){
        if(prime(i)+prime(n-i)==n){
            printf("%d = %d + %d",n,i,n-i);
            break;
        }
    }
    return 0;
}

此代码虽然可以实现对素数的判断,但由于循环判断次数过大
会运行超时

以下为正解(素数算法)
区别为返回值的不同

#include<stdio.h>
#include "math.h"
int prime(int a) {         //如果a为素数,返回1,否则返回0
    int b = (int)sqrt(a);
    for (int i = 2; i <= b; i++) {
        if (a % i == 0) {
            return 0;
        }
    }
    return 1;
}
int main(){
    int n;
    scanf("%d",&n);
    if(n%2!=0)
        return 0;
    for(int i=2;i<=n;i++){
        if(prime(i)&&prime(n-i)){     //若为真
            printf("%d = %d + %d",n,i,n-i);
            break;
        }
    }
    return 0;
}
#include<stdio.h>
#include<math.h>
int prime(int a) {         //如果a为素数,返回a,否则返回0
    int m = 0,b=(int)sqrt(a);
    for (int i = 2; i <= b; i++) {
        if (a % i != 0) {
            m = 0;
        }
        else
            return 0;
    }
        if (m == 0)
            return a;
    }
int main(void){
    int n;
    scanf("%d",&n);
    if(n%2!=0)
        return 0;
    for(int i=2;i<2000000010;i++){
        if(prime(i)+prime(n-i)==n){
            printf("%d = %d + %d",n,i,n-i);
            break;
        }
    }
    return 0;
}

注:
sqrt 定义在 math.h 中
取根号
采用数学方法可证明只需循环 sqrt(a) 次

未完待续

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值