机器学习
文章平均质量分 71
幸运的Alina
这个作者很懒,什么都没留下…
展开
-
运用sklearn做逻辑回归预测
逻辑回归算是机器学习中最基础的模型了,回归模型在做分类问题中有着较好的效果。下面介绍下利用sklearn做逻辑回归模型 做模型一般分为:提取数据---->了解数据(所谓的探索性数据)---->数据预处理(包括但不限于填充缺失值,特征提取,转换哑变量)---->选择模型---->验证模型---->模型优化下面先简单介绍下逻辑回归的原理: 说...原创 2018-07-16 21:43:12 · 21136 阅读 · 4 评论 -
机器学习模型评估混淆矩阵、ROC曲线和AUC以及PR曲线
在机器学习中,当我们基于某个业务建立模型并训练后,接下来我们需要评判模型好坏的时候需要基于混淆矩阵,ROC和AUC等来进行辅助判断。混淆矩阵也叫精度矩阵,是用来表示精度评价,为N *N的矩阵,用来判别分类好坏的指标。混淆矩阵中有以下几个概念:TP(True Positive): 被判定为正样本,实际也为正样本FN(False Negative):伪阴性 ,被判定为负样...原创 2018-08-15 15:40:04 · 17289 阅读 · 2 评论 -
python利用joblib保存训练模型
在机器学习中我们训练模型后,需要把模型保存到本地,这里我们采用joblib来保存from sklearn.externals import joblib#保存模型def Save_Model(self, model, filepath): joblib.dump(model, filename=filepath)def Decision_Tree_classifier(se...原创 2018-09-11 17:07:57 · 29483 阅读 · 0 评论 -
详解sklearn中的merics
sklearn.metrics 不仅包括了评估功能,还有性能度量,距离度量等 。分类矩阵metrics.accuracy_score(y_true,y_pred[,…]) 精确度 metrics.auc(x,y[,reorder]) AUC面积 metrics.average_precision_score(y_true,y_score) 根据预测得分...原创 2018-11-06 10:31:24 · 6384 阅读 · 2 评论 -
推荐系统学习
目前的推荐系统分为三类:1. 非个性化推荐系统 特点:基于统计分析技术,推荐销售排行,这样所有的用户看到的推荐信息都是一样的,或者编辑推荐,以及基于平均数值评分。2. 半个性化推荐系统特点: 根据用户当前的浏览行为或用户当前的购物车信息产生推荐结果 3. 完全个性化推荐系统特点:根据用户历史信息,结合用户当前行为,为用户完全产生个性化的推荐服务 做推荐系统的时候,输...原创 2019-02-26 14:09:22 · 821 阅读 · 0 评论 -
利用movielens数据集实现基于物品的协同过滤推荐
文中的数据集来源于 movielens的ml-100k ,数据集包括,u.data、u.item、u.user 。这里简要介绍下实现的思路,因为是基于物品的协同过滤,所以这里就是找两两物品之间的联系,然后根据物品来给用户进行相应的推荐,这里首先是要生成用户对物品的评分矩阵,然后就是生成物品同现矩阵,推荐结果 =物品同现矩阵* 用户物品评分矩阵。首先是导入数据,将所给的数据导入进来,因为主...原创 2019-05-21 17:03:19 · 8111 阅读 · 9 评论 -
机器学习算法原理详解(一)-----逻辑回归
开一个系列来记录自己在学习机器学习算法原理中的心得与感悟,首先从逻辑回归开始写起吧。 逻辑回归在维基百科的定义是Logistic回归是一种统计模型,其基本形式是使用Logistic函数来对二元因变量建模,尽管存在许多更复杂的扩展。在回归分析中,逻辑回归(或logit回归)是对逻辑模型(一种二元回归形式)的参数进行估计。在数学上,二元逻辑模型有一个因变量,它有两个可能的值,比如通过/...原创 2019-09-30 17:45:40 · 1075 阅读 · 1 评论