深度学习
小关_同学
这个作者很懒,什么都没留下…
展开
-
【面试必备】之《深度神经网络一路走来所遇到的的问题》
(1)过拟合 内容解析: 解决方法 (2)梯度消失/爆炸 内容解析: 解决方法: (3)内部协方差偏移 内容解析: 解决方法 (4)模型退化 内容解析: 解决方法原创 2020-06-16 14:21:01 · 212 阅读 · 0 评论 -
【面试必备】之《Batch Normalization》
BN解决了梯度消失的问题,使得深度神经网络可以收敛,但并不能保证收敛后的网络就一定比浅层网络有更好的性能(即会出现网络退化问题,所以后来出现了残差网络,来解决这个网络退化的问题)。 传统的神经网络,只是在样本输入时对样本进行标准化处理,以降低样本特征之间的差异性。 与此同时,BN主要解决的是所谓的内部协方差偏移问题(Internal Covariate Shift)。内部当然就是指深度神经网络的内部,也就是除去输入层之外的隐藏层加上输出层,因为对于输入层而言,我们可以通过各种标准化归一化的手段使其输入数据属原创 2020-06-12 11:24:51 · 183 阅读 · 0 评论