神经网络
文章平均质量分 89
_不二_
www.codecup.cn
展开
-
机器学习笔记2:神经网络
神经网络即神经网络学习,是机器学习与神经网学习两个学科领域的交叉部分. 神经网络在1988年被T.Kohonen 定义为:神经网络是由具有适应性的简单单元组成的广泛并行互联网络,它的组织能够模拟生物神经系统对真实世界物体做出的交互反应. neuron(神经元)模型是神经网络的基本模型. 专属单词 神经元(neuron || unit) 阈值(threshold || bias)连接(connection)激活函数(activation function)感知机(Perceptron)阈值逻辑单元(thr原创 2020-05-29 11:31:02 · 226 阅读 · 0 评论 -
深度学习 卷积神经网络
什么是神经网络CovNet 是一种空间上共享参数的神经网络卷积在神经网络中,图片除了有宽度,高度外 加上图片普遍都存在红绿蓝三色通道,所以图片还有深度。下图例子中的深度就是3 现在假设拿出图片的一小块,运行一个具有K输出的小的神经网络。 像这样把输出表示为垂直的一小列,在不改变权重的情况下 把这个小神经网络滑过。 整个图片,就像我们拿着刷子刷墙一样水平垂直地滑动。在输出端 我们画原创 2017-09-13 14:33:29 · 563 阅读 · 0 评论 -
深度学习-神经网络
很多神经网络领域的重要研究都出现在 1980 年代和 1990 年代 但当时计算机速度非常慢 数据集也很小,研究并未在现实生活中得到很多应用,因此 21 世纪的前十年 神经网络,几乎从机器学习领域完全销声匿迹了,关于神经网络的研究变得非常边缘化。 只有在近几年 首先是 2009 年左右的语音识别。然后是 2012 年左右的计算机视觉。神经经网络才华丽转身 荣耀回归。 究竟什么变了。翻译 2017-09-14 13:57:45 · 257 阅读 · 0 评论 -
Tensorflow - CNN 卷积神经网络
在神经网络中加入CNN会大幅度 提升代码的准确率。在之前的博客中有提到过分类,但那当时测试的最终得到的概率并不理想,这次我们换掉那个神经网络,使用CNN劵积神经网络,再跑一次分类看看效率如何。 这次使用的劵积结构是 卷积层和最大池化层 相互交替 然后在最末端连接几层全连接层,看下图。 话不多说,上代码:# coding:utf-8 import tensorflow as tf i原创 2017-09-14 15:13:21 · 321 阅读 · 0 评论 -
深度学习 - 循环神经网络RNN
当数据是有顺序的时候,我们就可以使用RNN了,比如说话的顺序 有序列化的数据等的。 在介绍RNN之前,我有篇博客是介绍了CNN,简单提一下,在一张大的图片是上,我们有一个fliter滤波器,通过共用参数来扫描这张图片,提取出一张精髓的图片,再在这这张图片上使用同样个滤波器,再进行一次扫描,总结出一张更为精髓的图片。这个就叫做CNN,详细介绍点这里,RNN也是同样的事情,只是在不同时间顺序上面了原创 2017-09-15 14:44:44 · 368 阅读 · 0 评论