python基础-内置函数

本文深入探讨了Python的基础语法,包括变量声明、数据类型转换、文件操作、迭代器和范围函数等,并详细解析了多种内置函数的功能与使用场景,如print(), input(), len()等,以及eval(), exec()等高级函数的执行机制。

print()
input()
len()
type()
open()
tuple()
list()
int()
bool()
set()
dir()
id()
str()

print(locals()) #返回本地作用域中的所有名字
print(globals()) #返回全局作用域中的所有名字
global 变量
nonlocal 变量

迭代器.next()
next(迭代器)
迭代器 = iter(可迭代的)
迭代器 = 可迭代的.iter()

range(10)
range(1,11)
print(‘next’ in dir(range(1,11,2)))

dir 查看一个变量拥有的方法
print(dir([]))
print(dir(1))

help
help(str)

变量
print(callable(print))
a = 1
print(callable(a))
print(callable(globals))
def func():pass
print(callable(func))

import time
t = import(‘time’)
print(t.time())

某个方法属于某个数据类型的变量,就用.调用
如果某个方法不依赖于任何数据类型,就直接调用 —— 内置函数 和 自定义函数

f = open(‘1.复习.py’)
print(f.writable())
print(f.readable())

id
hash - 对于相同可hash数据的hash值在一次程序的执行过程中总是不变的
- 字典的寻址方式
print(hash(12345))
print(hash(‘hsgda不想你走,nklgkds’))
print(hash((‘1’,‘aaa’)))
print(hash([]))

ret = input('提示 : ')
print(ret)

print(‘我们的祖国是花园’,end=’’) #指定输出的结束符
print(‘我们的祖国是花园’,end=’’)
print(1,2,3,4,5,sep=’|’) #指定输出多个值之间的分隔符
f = open(‘file’,‘w’)
print(‘aaaa’,file=f)
f.close()

import time
for i in range(0,101,2):
time.sleep(0.1)
char_num = i//2
per_str = ‘\r%s%% : %s\n’ % (i, ‘’ * char_num)
if i == 100 else ‘\r%s%% : %s’ % (i,’
’*char_num)
print(per_str,end=’’, flush=True)
progress Bar

exec(‘print(123)’)
eval(‘print(123)’)
print(eval(‘1+2+3+4’)) # 有返回值
print(exec(‘1+2+3+4’)) #没有返回值
exec和eval都可以执行 字符串类型的代码
eval有返回值 —— 有结果的简单计算
exec没有返回值 —— 简单流程控制
eval只能用在你明确知道你要执行的代码是什么

code = ‘’‘for i in range(10):
print(i*’*’)
‘’’
exec(code)

code1 = ‘for i in range(0,10): print (i)’
compile1 = compile(code1,’’,‘exec’)
exec(compile1)

code2 = ‘1 + 2 + 3 + 4’
compile2 = compile(code2,’’,‘eval’)
print(eval(compile2))

code3 = ‘name = input(“please input your name:”)’
compile3 = compile(code3,’’,‘single’)
exec(compile3) #执行时显示交互命令,提示输入
print(name)
name #执行后name变量有值
“‘pythoner’”

复数 —— complex
实数 : 有理数
无理数
虚数 :虚无缥缈的数
5 + 12j === 复合的数 === 复数
6 + 15j

浮点数(有限循环小数,无限循环小数) != 小数 :有限循环小数,无限循环小数,无限不循环小数
浮点数
354.123 = 3.54123*10**2 = 35.4123 * 10
f = 1.781326913750135970
print(f)

print(bin(10))
print(oct(10))
print(hex(10))

print(abs(-5))
print(abs(5))

print(divmod(7,2)) # div出发 mod取余
print(divmod(9,5)) # 除余

print(round(3.14159,3))
print(pow(2,3)) #pow幂运算 == 2**3
print(pow(3,2))
print(pow(2,3,3)) #幂运算之后再取余
print(pow(3,2,1))

ret = sum([1,2,3,4,5,6])
print(ret)

ret = sum([1,2,3,4,5,6,10],)
print(ret)

print(min([1,2,3,4]))
print(min(1,2,3,4))
print(min(1,2,3,-4))
print(min(1,2,3,-4,key = abs))

print(max([1,2,3,4]))
print(max(1,2,3,4))
print(max(1,2,3,-4))
print(max(1,2,3,-4,key = abs))

内容概要:本文主要介绍了一项关于四足机器人轨迹优化四足机器人轨迹优化研究(Matlab代码实现)的研究,重点在于利用Matlab代码实现轨迹优化算法。通过对四足机器人运动学与动力学模型的建立,结合优化算法(如非线性模型预测控制、智能优化算法等),实现机器人在复杂地形下的稳定行走与高效路径规划。文中详细阐述了优化目标的设计,包括步态稳定性、能耗最小化、关节力矩平滑性等,并通过Matlab仿真验证了所提方法的有效性和鲁棒性。此外,文档还列举了多个相关研究方向和技术应用,展示了该领域与其他智能控制、路径规划及多传感器融合技术的紧密联系。; 适合人群:具备一定机器人学、自动控制理论基础,熟悉Matlab编程,从事智能机器人、运动控制、路径规划等相关方向的研究生、科研人员及工程技术人员。; 使用场景及目标:①用于四足机器人步态生成与轨迹优化算法的开发与仿真验证;②为复杂环境下移动机器人运动控制提供解决方案;③支持科研教学中对非线性优化、模型预测控制等高级控制策略的学习与实践。; 阅读建议:建议读者结合提供的Matlab代码进行实际操作,深入理解轨迹优化的数学建模过程与求解方法,同时可参考文中提到的协同路径规划、多传感器融合等扩展内容,拓展研究思路。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值